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In this paper we have investigated whether colour perception is affected by the
distribution and the spatial organisation of colours in a complex image. In the first
part of our study, we analysed the influence of scene content and of background
types on the colour appearance judgement. To reach this aim we ran visual
assessment experiments based on the magnitude estimation technique and we
investigated various visual phenomena, such as brightness adaptation, chromatic
spatial adaptation, contrast effects due to sizes and coloured backgrounds, display
field sizes and dynamic range in the scene. The examination of nhumerous visual
assessment results done showed that the influence of the background on colour
appearance is more noticeable for complex images with high frequencies than for
colour images with low frequencies or simple images. Likewise, the influence of the
background on colour appearance is more noticeable for chromatic images with a
large gamut than for less coloured images with a low gamut. In the second part of
our study, we analysed the influence of the local colour saliency on the colour
appearance. We developed a computational model to measure colour contrast. Our
motivation was to define an objective metric consistent with observer valuation.
The proposed model integrates in a single model the influence of average colour
perception and the interactions between local and global spatial structures
according to the visual eccentricity. The measure of colour contrast relies on a set
of parameters organised in a hierarchical structure. The computation is based on
spatial criteria and integrates low-level factors calculated on defined regions
relatively to their local and global neighbourhoods.
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It is well known that colour appearance of a scene depends on the environment in
which elements are viewed and that colour perception is affected by the
distribution and the spatial organisation of colours [1]. During the last decade,
increased knowledge about colour perception has been exploited in computer vision
to improve colour management and to develop computational models which
correlate with human perception. The fidelity of the correspondence between
algorithmic predictions and human perception is important because it ensures the
validity and the relevancy of objective measures compared with subjective
valuations [2]. Colour appearance descriptors should play a major function in
computer vision. It could be helpful to improve models with application in visual
search, video compression, image database querying, and all other image

processing fields where human observer is directly implied [3—4].

Colour appearance is influenced by several and different factors such as spatial
colour distribution in the observed scene or spatial induction from different
coloured surfaces. Surround and background largely influence the colour
appearance of a patch. Previous works showed the importance of colour contrast in
the judgement of perceived colours [1—2]. For example, Olzak et al. studied the
centre-surround interactions between coloured areas in fine spatial
discriminations [5]. Other works showed the importance of colour saliency in the
perception of complex images [6]. One major drawback of most existing saliency
models is that either colour information is not integrated in the computation or it
is taken into account only through the raw RGB components of processed images
[7]. For example, Van de Weijer et al. proposed a salient point detector based on the
analysis of the statistics of colour derivatives of RGB components [8]. Another
important drawback of current saliency models is that local spatial organisation of
the visual scene generally does not play an active part in the processing. However,
it is, for instance, well known that a large uniform patch does not attract visual
attention as a fine textured structure does. Moreover, colour appearance is widely
dependent on the local spatial arrangements. When a lot of papers deal with the
detection of points of interest, few works study the extraction of Regions of Interest
(ROI). However we can note that ROI detection based on visual attention
mechanisms is increasingly discussed in the image processing community [9—14].
For example, Hu et al. propose a Visual Attention Region (VAR) process which
involves the selection of features such as intensity, colour, orientation and size as
performed by the primary visual cortex [15]. The uniqueness of a combination of
such features at a location compared to its neighbourhood indicates a high salient
region. The selection of ROI is directed by both neurological and cognitive
resources. Neurological resources refer to bottom-up (stimuli-based) information

when cognitive resources refer to top-down (task-dependent) cues [16]:
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stimulate achromatic and chromatic parallel pathways of the human
visual system [17].
« Top-down cues are controlled by high-level cognitive strategies largely

influenced by memory and task-oriented constraints [18].

It is well acknowledged that the visual field is decomposed into a set of ROI [19]. Tt
means that visual attention mechanisms offer an effective approach to analyse
complex scenes with limited transmission bandwidths and processing resources
[20]. According to numerous studies, the future of visual attention models will
follow the development of perceptual multiscale saliency map based on a
competitive process between all bottom-up cues (colour, intensity, orientation,
location, motion) [21—24]. In order to be consistent with human visual perception,
colour information must be exploited on the basis of chromatic channel
opponencies. Likewise, in order to be consistent with neural mechanisms, all
features must be quantified in the LMS colour space. During the competitive
process colour information must be modulated by local spatial arrangements of the

visual scene.

One goal of the present work was to explore how complex spatial backgrounds
influence colour appearance, without taking into account the implicit semantics of
the image. We have therefore limited our experiments to the study of complex
(natural) images segmented. We have not studied the influence of segmentation of
colour appearance, as Wichmann [25] or Canosa [26] did. In general, to estimate
the colour appearance of an ROI, the observer both focuses his attention on specific
(segmented) areas of the background, and globally views the entire image [25]. In
our study, we have not investigated whether the observer focuses his attention on
specific (segmented) areas of the background; we have only taken into account his

global judgement.

The aim of the first section is to give a brief state of the art of colour appearance
models and visual appearance models in order to show how visual saliency

parameters interact with colour appearance parameters.

The following section is devoted to analyse the influence of scene content (colour
patches and spatially-varying images) and of background types (a simple chart
with a few number of colour patches, complex spatial backgrounds and spatially -
varying backgrounds) on the colour appearance judgement. To reach this aim we
ran visual assessment experiments based on the magnitude estimation technique.
This scaling technique was the key point of LUTCHI dataset experiments [27]. The
aim of this study is not to provide absolute quantitative values, in such a case the

colour matching technique would have been more accurate, but to evaluate

Figure 11

A

g i T F 0L ohut

I N
]

Figure 15




Moreover, Luo exposed three advantages of magnitude estimation [27]. It provides
absolute perceptual values for colour attributes. It gives results perceptually
equivalent to those predicted by colour appearance models easily leading to derive
a colour model. Finally, it expresses colour in a consciously reportable form. In our
study, we investigated various visual phenomena, such as brightness adaptation,
chromatic spatial adaptation, contrast effects due to sizes and coloured
backgrounds, display field sizes and dynamic range in the scene. A previous work
was done by Webster [1], in which the motivation was to examine changes in
colour perception resulting from adaptation or induction to colour contrast in
spatially varying backgrounds. Our motivation was quite different; our aim was to
examine background influences on colour appearance to define new specific
viewing parameters consistent with colour perception. Another work was also done
by Fairchild [28], in which the motivation was to propose an image appearance
model referred to as iCAM. The iCAM model has a sound theoretical background;
however, it is based on empirical modelling of viewing parameters relative to the
image content, background and surround rather than a standardised colour
appearance model such as the last referent CIE colour appearance model: the
CIECAMo2 [29]. Moreover, filters implemented are only spatial and cannot
contribute to colour rendering improvements for mesopic conditions with high

contrast ratios and for a large viewing field.

The third section is devoted to introduce a computational model developed to
measure colour contrast. The idea is to define an objective metric consistent with
observer valuation in order to test the influence of the local colour saliency on the
colour appearance. The proposed approach integrates in a single model the
influence of average colour perception and the interactions between local and
global spatial structures according to the visual eccentricity. The measure of
colour contrast relies on a set of parameters organised in a hierarchical structure.
The computation is based on spatial criteria and integrates low-level factors

calculated on defined regions relatively totheir local and global neighbourhoods.

Colour Appearance Models

The first colour appearance model (CAM) recommended by the CIE in 1997 was
CIECAMo97s [30—32]. Next, in 2004, this model was superseded by the CIECAMo2
in order to overcome several shortcomings [33—35]. CIECAMo2 predicts
satisfactory, within some limits, a wide range of perceptual factors contributing to
colour image difference perception. Nevertheless, it insufficiently took into account
some very important perceptual factors linked to: viewing conditions (surround

and background. luminance range. luminance adaptation. chromatic adaptation):
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mesopic vision (rod contribution).

The main perceptual factor which influences colour appearance estimation is
related to viewing conditions. In CIECAMo2, viewing conditions are defined by the
illumination (light source and luminance level) and by the luminance factors of
background and surround (average, dim or dark). These parameters are very
difficult to define, so they lead to confusion and deviations in experimentation.
Recent work had been carried out to better predict changes in colour appearance
with different viewing parameters [36—37]. The second perceptual factor which
has a profound impact on the colour appearance is linked to the luminance range of
the image observed (white-to-dark, e.g. from highlight to shadow) and more
generally to the background surrounding the objects in the image. Such a
hypothesis has been already reported by Hubel [38] and Corriea [39] with regard
to the problem of assessing image quality using segmented contents. Likewise,
Webster proved that colour perception changes in spatially-varying backgrounds
[1]. To examine the effect of adaptation and induction to colour contrast, Webster
used a hue-scaling task. The third perceptual factor which has a profound impact
on the colour appearance of an image is linked to the state of visual adaptation of the
observer. Most models of colour appearance assume photopic vision, and
completely disregard the contribution from rods at low levels of luminance. The
only colour appearance model which includes a rod contribution was the Hunt
1994 model [40]. Likewise, Kwak [37, 41] had investigated the problem of colour
appearance under mesopic vision conditions using magnitude estimation

technique.

The idea of this paper is not to improve the CIECAMo2 model by incorporating
perceptual factors such as those cited above but to compute the influence of these
factors on colour differences perception. A complete model should predict various
well-known visual phenomena such as the Stevens effect, Hunt effect, Bezold-
Briicke effect, simultaneous contrast, crispening, colour constancy, colour
memory, discounting-the-illuminant, light, dark and chromatic adaptation,
surround effect, spatial and temporal visions. All these phenomena are caused by
the change of viewing parameters, primarily illuminance level, field size,
background, surround, viewing distance, spatial and temporal variations, viewing
mode (illuminant, surface, reflecting, selfluminous or transparent), structure
effect, shadow, transparency, neon-effect, saccades effect, stereo depth, etc (Figure
1). We have limited our scope to the viewing conditions, the luminance range and the
visual appearance, because their influence is strong when an observer sees a digital
image, particularly when an observer sees an image under mesopic viewing

conditions.
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introduced to provide a saliency map which codes the local visual attractors over
the entire scene [26, 42—43]. We can suppose that visual attractors influence the
colour appearance of an image and more specifically the colour saliency which
codes the local regions where colour features such as hue, contrast, and opponency
would guide the attention of a human observer during a visual search task over

the entire visual scene [16, 44].

Sano has shown that the perception of colour difference is image dependent [45].
This image dependence is especially noticeable in lightness direction. Sano’s
experiments showed that lightness differences were less noticeable than chroma
and hue differences and confirmed that the background (i.e. the colour of pixels)
influence is more significant on colour difference evaluation for complex (natural)
images than for colour patches. Furthermore, Wichmann demonstrated that
colour, contrast, saliency and image segmentation influence recognition’s memory
[25]. Wichmann’s experiments confirmed that the colour is a highly salient visual

attribute which increases subject’s attention.

When dealing with the perception of colour images, visual contrast sensitivity
plays an important role in the filtering of visual information processed
simultaneously in the various visual “channels”. The high frequency active
channel (also known as parvo-cellular or P channel) enable detail perception; the
medium frequency active channel allow shape recognition, whereas the low-
frequency active channel (also known as magno-cellular or M channel) are more

sensitive to motion.

Spatial contrast sensitivity functions (CSF) are generally used to quantify these
responses and are divided into two types: achromatic and chromatic. Achromatic
contrast sensitivity is generally higher than chromatic. For achromatic
sensitivity, the maximum sensitivity to luminance for spatial frequencies is
approximately 5 cycles/degree. The maximum chrominance sensitivity is only
about one tenth of the maximum luminance sensitivity. The chrominance
sensitivities fall off above 1 cycle/degree, particularly for the blue-yellow opponent
channel, thus requiring a much lower spatial bandwidth than luminance. To
further complicate matters, the spatial and temporal CSFs are not separable and so
must be investigated and reported as a function on the time-space frequency plane.
For example, although foveal acuity is far better than peripheral acuity, many
studies have shown that the near periphery resembles foveal vision for moving
and flickering gratings. It is especially true for sensitivity to small vertical
displacements, and detection of coherent movement in peripherally viewed

random-dot patterns. Central fovea and peripheral vision are qualitatively similar
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spatial and temporal effects have been reported by numerous papers [28, 46—49].
Several studies have shown that the Human Visual Sy stem is more sensitive to:

» low frequencies than tohigh frequencies
» noise in dark and bright regions than in other regions
« distortionsin regions of high activity (e.g. salient regions)

« distortions near edges (objects contours) than in highly textured areas [50].

All these spatial effects are unfortunately not taken into account enough by
CIECAMg7s or CIECAMo2 colour appearance models. Even if numerous papers
have been published on this topic, in particular in the proceedings of the CIE
Expert Symposium on Visual Appearance organised in 2006 [21, 51—53], there is

a need for further research on spatial effects.

The main limitation of colour imaging in the colour appearance models previously
described is that they can only predict the appearance of a single stimulus under
“reference conditions” such as a uniform background. These models can been used
successfully in colour imaging as they are able to compute the influence of viewing
conditions such as the surround lighting or the overall viewing luminance on the
appearance of a single colour patch. The problem with these models is that the
interactions between individual pixels are mostly ignored. To deal with this
problem, spatial appearance models have been developed such as the iCAM [48.
54] which take into account both spatial and colour properties of the stimuli and
viewing conditions. The goal in developing the iCAM was to create a single model
applicable toimage appearance, image rendering, and image quality specifications
and evaluations. This model was built upon previous research in uniform colour
spaces, the importance of image surround, algorithms for image difference and
image quality measurement [28], insights into observers eye movements while
performing various visual imaging tasks [55], adaptation to natural scenes [57]
and an earlier model of spatial and colour vision applied to colour appearance

problems and high dynamic range (HDR) imaging [57].

The iCAM model has a sound theoretical background, however, it is based on
empirical equations rather than a standardised colour appearance model such as
CIECAMo2 and some parts are still not fully implemented. It is quite efficient in
dealing with still images but it needs to be improved and extended for video
appearance [54]. Moreover filters implemented are only spatial and cannot
contribute to colour rendering improvement for mesopic conditions with high
contrast ratios and a large viewing field. Consequently, the concept and the need
for image appearance modelling are still under discussion in the Division 1 of the

CIE, in particular in the TC 1-60 ‘Contrast Sensitivity Function (CSF) for Detection
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complex image is still an open question.

Visual Assessment Experiments

Viewing conditions

In this study, we considered the case for which the observer saw projected images
on a screen in a darkened room. The average luminance of the screen (i.e. the
surround) was less than 10 cd/m?® consequently the human visual system
operated in the mesopic range rather than in the typical photopic range [33].
Observers watched the images projected on a white screen with a distance about

270 cm (Figure 2).

The projector used for the study was calibrated daily before each session of
psychovisual experiments and a MURATest (colour wheel video-colorimeter) was
used to control the non-uniformity of the projection. The device used in this study
(developed by the ELDIM company) has a CCD of resolution 1536x1024 and a 16
bit A/D converter. Furthermore, previous experiments done in our laboratory had
shown that it has a homogeneous accuracy on whole CCD array. All test patches
and reference patches projected on the screen were measured. All these measures
were used to compare colour attributes assessed by observers to colour data
displayed. All background patches were also measured to control and calibrate the
video-projector. The viewing angle for each image was about 24° which
corresponds to a perifoveal vision. The size of images was 90 cm by 115 cm. The
images were partitioned in hexagonal cells of constant size. For most of experiments
the viewing angle for each patch (cell) was about 1.5°, which corresponds to a
foveal vision (Figure 3).

The reference white was always set to the white patch of the image displayed on

the screen for most of the tests or measurable onto the white screen (outside the

background) for tests involving complex images. The luminance of the reference
white point was set to 200 cd/m® The luminance of the dark wall surrounding the
white screen was set to1 cd/m? The luminance of the background of images (black

patches) was approximately equal to 0.8 cd/m?

Image data sets
Two different sets of test images were used: one with a simple background, another
one with a complex background. For the first set, two reference stimuli and a

reference grey scale were presented to allow a better relative estimation. The test



specifications of the viewing pattern used for the LUTCHI data set [27] (Figure 4).
In order to be consistent with previous experiments done with the LUTCHI data set,

we used the L*a*b* colour space for our visual assessment experiments.

The second set of test images almost entirely covered the background. No reference
patch was presented in this case. For all experiments, assessments were realised
with magnitude estimation technique. In this test set (shown in Figure 5), the
first image (houses) corresponds to a colour image with few colours (the average
value of a* and of b* is equal to 0), a small gamut and high spatial frequencies. The
second image (girl’s face) corresponds toa more coloured image with a large gamut
and low spatial frequencies. Lastly, the third image (motorcy clists) corresponds to
a colour image with a larger gamut and high spatial frequencies. The first image
was chosen because the convex hull of its colour gamut approximately overlapsthe
colour gamut of background patches used for the first set of images with simple
background. On the other hand, the colour gamut of the two others is more

extended.

Background patches were computed to sample the colour gamut. For each test, all
patches were hexagonal in shape. For each test stimulus, reference stimuli and
background stimuli had the same size. Whatever the test, four reference patches (a
red, a green, a yellow and a blue one) were used (Figure 6) and ten test patches
were computed for each reference patch. The colour of these patches was derived
from reference patches (Figure 7). The test patches were chosen to cover a large

colour gamut and luminance range.

Visual assessment technique

Before the experiment started, observers were asked to adapt to the surround field
and to look to a grey image for a period of five min. The first time observers
participated in the experiment, a training session was conducted in order that
observers did not introduce bias in the results. After being adapted, observers were

asked to estimate the lightness, colourfulness and hue of the test patch displayed
(e.g. Figure 8).

For the first set of experiments:

» The lightness attribute was estimated relatively to a reference grey scale.
Ten lightness patches were presented from black (L = 0) to white (L = 100)
on the bottom of the background. For each run the slider of the lightness
scale was set to the lightness value of the reference patch. The same
reference white patch was also presented right under the test patch.

« The colourfulness attribute was estimated relatively to a colourfulness

arale Twa reference valuiec had heen nieed tn charten the colanrfiilnecce erale:
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colourfulness of colour patches was always under 100). These reference
values were used in order to reduce variations between observers and to
adjust all colourfulness visual results onto the same visual scale. For each
run the slider of the colourfulness scale was set to the colourfulness value of
the reference patch.

« The hue attribute was estimated relatively to two hue scales; a Red/Green
scale and a Blue/Yellow scale (respectively a* and b* axes of the L*a*b*
colour space). For each run the two sliders of the hue scales were set to the

hue values of the reference patch.

For the second set of experiments, there is no reference patch, so the observer was
asked to estimate the difference of hue, lightness and colourfulness between the test
patch and the colour of the background. Neither reference stimulus nor grey scale
was used for this second set. For each run the cursor was set to the lightness, hue
and colourfulness values of the mean lightness, mean hue and mean colourfulness

values of the background, respectively.

For the first set of test images, we have considered five sub-sets of tests (e.g. Figure

9):

» Sub-test 1: study of the influence of the lightness of background patches;

» Sub-test 2: study of the influence of the colourfulness of background patches;

+ Sub-test 3: study of the influence of the hue of background patches;

» Sub-test 4: study of the influence of the size of background patches;

« Sub-test 5: study of the influence of the distance between the background
patches and the central ones.

For the second set of test images, we have considered three sub-sets of tests:

» Sub-test 1: study of the influence of the size of background patches (e.g.
Figure 10);

« Sub-test 2: study of the influence of the colourfulness of background patches;

» Sub-test 3: study of the influence of the spatial frequencies of background
patches (see Figure 5)

Results of visual assessment experiments

Ten observers participated in these experiments. They were students or
researchers in computer vision and image understanding (male and female, aged
between 18 and 45). All had a normal colour vision according to Ishihara test. Half
of them had had experiences in attending psychophysical experiments. In total,
800 judgements per observer were made. The whole assessment was divided into

seven sessions (three experiments per session) each lasting approximately 40 min



Results reported in this study are plotted thanks to Quantile-Quantile plot
strategy. Figures 11—14 are given to illustrate the most significant results of our
study. The values entitled ‘measured L*, Cap* or h,y correspond respectively to the
lightness, chroma or hue values measured by the MURATest. The values entitled
‘perceived L*, Cup* or hay correspond, respectively, to the lightness, chroma or hue

values assessed by users thankstomagnitude estimation.

Figure 11 shows two examples of hue assessment done by all observers. These
examples show how colour appearance varies as a function of background in
regards to the hue dimension. The conspicuous bend away from the diagonal
results from the well established observation that stimulus variations along the
hue dimension donot correspond to pure red—green and blue—yellow sensations [1].
As we can see on Figure 11, whatever the test considered, the hue is either over
estimated for yellow colours (around 104°) or for green colours (around 145°), or
under-estimated for blue colours (around 275°) or red colours (around 20°).
Whatever the type of background considered, it appears that background strongly
biases the perceived hue of the stimuli, for some tests by more than 40 degrees.
Lastly, we have noted that the undulations in the curves are similar whatever the
test but their amplitude is quite different. These curves demonstrate that the bias
in perceived hue is quantitatively different from one type of background to

another one.

Figure 12 shows two examples of the hue assessment when the hue of background
patchesis constraint to a given gamut of colours. According to the colour of the test
patches and the colour gamut of the background, the hue is either under estimated
or overestimated. The biases are either more pronounced or in the opposite
direction when the hue of background patches is in the opposite direction of test

patch.

In order to estimate the bias on each colour dimension due to each type of
background we first analysed separately lightness, hue and chroma. Next, we
analysed these colour dimensions together and adjusted our data according to a
simple linear model (see Figures 13 and 14). Moreover, we have computed the
correlation coefficient of each adjustment to check its reliability. In general, the
image dependence was especially noticeable in hue direction (see shape coefficients
of Figures 13 and 14). That is the reason why the results linked to lightness

direction or chroma direction are not presented in this paper.

The hue versus lightness difference is shown in Figure 13 and the hue versus
chroma difference in Figure 14. Shape coefficients of the fitting curve show that

spatial background produced large and selective shifts on colour appearance. In



complex image (see Figure 14c¢) than with a simple background (see Figure 14a),
meanwhile the shifts on lightness dimension are lower (see Figure 13). Moreover,
the shifts in hue dimension are higher for more coloured images than for the low
coloured image confirming the influence of the number of colour patches in the
background and in their hue. Furthermore, whatever the colour dimension
considered, the shape coefficients demonstrated that the shifts are higher with a
complex image than with a simple background. As an example, we can compare
shape coefficients of Figures 13a/13b, of Figures 13a/13c, of Figures 14a/14b, and
of Figures14a/14c.

Let us now focus on the second set of test images (i.e. images with a complex
background). We can observe that the shape coefficients of the low coloured image
(Test 15) and of the more coloured images (Tests 16 and 17) are noticeably
different when looking for both hue and chroma dimensions (see Figure 14c¢). We
have shown that these differences are less noticeable for the high frequencies
images (Tests 18 to 20) and for the images with lower frequencies (Tests 15 to17)
when the ‘segmentation’ is coarser (i.e. for resolution 3, Test 20 and Test 17) than
when the ‘segmentation’ is finer (e.g. for resolution 1, Test 18 and Test 15), as we
can see on Figures 14d/14c. In such a case, high spatial frequencies are filtered by
the ‘segmentation’ and adjustment coefficients that lean toward those of images

compound of background patches (Figure 14a).

We have noticed that, whatever the test considered, the shape coefficients showing
lightness shifts induced higher colourfulness shifts. For example, on Figure 13 we
can see that lightness shifts (between perceived and measured values) are
systematically lower than hue shifts (between perceived and measured values).

This is confirmed by shape coefficients which all are lower than 1.

By and large, our results have confirmed that chroma shifts are less noticeable
than lightness and hue shifts. Likewise, lightness shifts are less noticeable than hue
shifts. These observations concur with other studies [45]. All our results show that
the visual judgment is less accurate when the colour difference between the test
patch and the reference patch ishigh (e.g. see Figure 13a: under a difference of hue
of 40 the correlation between lightness difference and hue difference is correct, but
above 40 the correspondence is bad). Lastly, our results show that the more
complex the content of a scene is the more the observer’s judgement is biased by
the colour of the background. This confirms Webster’s hypothesis in relation to
‘colour perception in different environments may be systematically biased by
distributions of colours in those environments’. In the colour contrast section, we
will present a measure of colour contrast which could be used to study if bias due to

viewing background result from both spatial contrast adaptation and spatial



Discussion

We have noticed that our results are significantly impacted by the duration of
experiments. Such observation was already done in previous studies. For example,
Wichmann [25] showed that, contrary to contrast, colour plays a major role on
long term visual memory (e.g. for display duration longer than 500ms). We have
also noted that the sequence of tests influences assessment estimations due to
human memory effect. In general, such a question has not been extensively
studied. To what extent the question was: is the viewer’s current impression (for
test T+ 1) of the experiment dependent upon previous assessment (for test 7)? We
do think so. That was the reason why in this study our tests were carried out in a
random order. More generally, we have noted that human memory effect biased
the assessment estimation when the background of the image did not vary in the
time from one test to the following one, and when the assessment estimation
duration was higher than at least 5 s. We have also observed that viewers were
quick and less accurate to assess high changes from one test patch to the following
one (between tests T and T + 1) but slow and accurate to assess low changes
(between test Tand T + 1). Considering that differences in viewer’s reaction times
to background changes may reduce assessment’s accuracy, the assessment time

was therefore limited toa minimum of 5 s.

Four continuous grading scales were used in this study with ten-grade assessment
valueslinearly spaced in order to help the viewer in hisjudgement (see Figure 8c).
Even if it has been established that there is no direct psychophysical
correspondence between a continuous scale and a rating scale, we observed a good
correlation when the colour difference between the test patch and the reference
patch is low or moderate. Nevertheless, when the colour difference is high,

correlation is lower.

A simple linear model has been used in this study to fit data. The next task will be
to define better fitting curves from non-linear functions, then to compute a fitting
model which parameterizes these fitting functions in function of the type of

background considered.

Several studies have demonstrated that colour influences considerably human
visual attention when seeing natural images [58]. Furthermore, several studies
have shown that contextual factors influence globally and locally the saliency of a
region [43]. In order to explore whether the local saliency of a region influences its
colour appearance we have introduced in the second part of our study a

computational model of colour contrast.



of the local saliency of a region on the colour appearance of an image from this

computational model (Figure 15 and Figure 16) and to extend the study of

viewing parameters to image content and to surround. The rationale will be to use
the three viewing parameters, background, surround and image content, as inputs
to colour appearance models. This means calculating new colour appearance
attributes into measurable objective mathematical entities. As for the first part of
the study presented in this paper, an image analyser will be used to capture
reference target images under all the viewing conditions studied. These images
will be analysed so as to accurately describe viewing parameters such as black

level, luminance range or contrast.

Colour Contrast Measure

As mentioned previously, colour considerably influences human visual attention
when seeing natural images, in particular contextual factors influence globally
and locally the saliency of a region. In order to explore whether the local saliency of
a region influences the colour appearance of regions we introduce in this second

part of our study a computational model of colour contrast.

General workflow of the colour contrast measure

The general work flow of the proposed computational model of colour contrast
measure is presented in Figure 17. This measure of colour contrast relies on a set of
parameters organised in a hierarchical structure. The computation is based on
spatial criteria and integrates low-level factors calculated on defined regions

relatively totheir local and global neighbourhoods.

As shown in Figure 18, a local neighbourhood N; is isotropically defined around a
given region of interest R;. A local neighbourhood N; consists of a set of regions
(patches) R; given by a coarse ‘segmentation’ of the original image I. Such a
segmentation process is managed by averaging colour information on a mosaic of
hexagonal patches [15]. All patches have the same size and they realise a
pavement of the original image. The size of patches is determined according to the
expected resolution of the working image i.e. the spatial density of patches (see

Figure 10).

The main advantage of our approach is that it is not driven by the choice of a
segmentation algorithm and by the setting of associated parameters. There is a
single control parameter derived from the number of patches that the observer

should see in his foveal visual field at a given distance of observation.



region of interest R;is described by its dimensions and by itslocation in the working
image. As previously stated, the dimensions of regions of interest are directly
linked to the ‘segmentation’ process. A region of interest corresponds to one of the
hexagonal patches of the mosaic used to compute the working image. The size of
patches is adjusted according to the visual angle sustained by the fovea. It
determines the number of patches captured by human eye when observing the

working image at a given distance.

Colour contrast is obviously modulated by chromatic variations but also by
changes in luminance. The original RGB image is projected into the AC1C2 colour
space to be consistent with the three different pathways of the human visual
system. Then luminance changes refer to the achromatic component A and
chromatic variations refer to the red—green and blue-yellow antagonist

components C1 and C2.

Let be:

C;_';f the colour values of pixel of coordinates (i,j).

« £ R;) the mean of colour values of the region of interest R;with Eqn 1

« (N, the mean of colour values of the neighbourhood N; with Eqn 2

« @ N;)thevariance of colour values of the neighbourhood N;with Eqn 3

« ¢~{{N;1the chromatic variance computed from f?cl':f"-r,-:' and f?.:z'if"-r;-:'
with Eqn 4

« £(Ithe colour mean of the original image I with Eqn 5

« ¢ Tlthe colour variance of the original image I with Eqn 6

« #~{I)the chromatic variance of the original image I computed from

el (L) and Lol (L) with Egn 7
Then, we can define the following local and global parameters:

1. Local luminance contrast between a region of interest R; and its
neighbourhood N;as Eqn 8

2. Local colour contrast between a region of interest R; and its neighbourhood
N; as Eqn o, with confrasiz [Rz fN;') and CoOnirasiz [Rfﬁz) expressed
by Eqn 8 where C1 and C2 replace A.

3. Luminance conirast, I:R,-ff‘-f!.iifjl between a region of interest R; and a
surrounding Ni™® which sustained a visual angle of +15° from the centre of

R;. The term condrast, [R, ff"-rz-iif) is expressed as contrast, [R,,/N;) and

Ni® consists of 6 hexagonal patches at resolution 1, 36 hexagonal patches at



10.

As previously explained, a neighbourhood N; is associated with each region
of interest R. Each neighbourhood is isotropic and consists of a set of 6
hexagonal patches. A local contrast depends on both the local spatial
structure of the scene and the size of the area where the local contrast is
quantified. Then, the measure of the colour contrast has obviously to
integrate the neighbourhood N; of a region of interest R; but also the local
surrounding of R;. Such a surrounding is isotropic and it is defined by a more

or less important number of hexagonal patches. This number of patches is
related to the expected resolution of the processed image at a given distance

of observation.

. Chrominance COnirasl: (&-/Nf@jl and Conirast; [E-ff"-rfif) between

a region of interest R; and its surrounding N;™. The terms
+4c® +ic®
contrasty (R,—/‘N;ﬁ ) and COREFast; I:R, j‘N;iS ) are, respectively,

expressed as COnirasir (Efﬁg] and C‘an?"ﬂS&jz[R(foj where N;i™®

replaces N;.
Colour CoRIrasi- [R,-//N!-hfjl between a region of interest R; and its
surrounding N;i™. The term conirasi- I:R,-/{N!-hfjl is expressed as

contrast, (R /N;], where Ni% replaces N

. Global luminance contrast between a region of interest R; and the overall

image I as Eqn 10.

. Global chrominance CORIrasiz (Rzﬁr) and C‘anmﬂ'c:[ﬂ'ff) between a

region of interest R; and the overall image I. The terms C‘ani’"ﬂﬂq (Re ﬁj
and contrasiz, [Rg ,-‘I) are, respectively, expressed as CONrasis I:E' sz')
and C‘ani“ﬂStc: I:Rg ng') where I replaces N;.

Global colour CDT?TWST.;—[R,-,-'{Q between a region of interest R; and the

overall image I. The term CDHT?"GSTC[R,-,H'I] is expressed as
contrasty (R /N;) where I replaces N

. Weight of a region of interest R;relatively toits eccentricity from the centre

ofimageI as Eqn 11.

where a represents the viewing angle between the region R; under study
and the central region R, of image I.

Resulting contrast of a region of interest R;in function of the luminance as

Egn 12 with Eqn 13.

Tha mara W1 . IfP_-"I tandc taurard mara tha lace tha aantract in



luminance is high. If Wagugst, [#4) £ 1 then the local contrast between the

region of interest R; and its local neighbourhood N; is insignificant with

regard tothe contrast between R;and the surrounding N;"™® and in regards to

the global contrast between R; and the whole image I. Conversely, the more

Wcmtr‘ag_‘d (Re) 21 the more the local contrast is noticeable.

11. Resulting contrast of a region of interest R;in function of the chrominance

Rordrast, [Rz:l . Tt is expressed as Fowatrast, (R;J with contrasi. [:R”INEJ
and Wcmmc[gz'), respectively, replacing contrasty (R /N,] and

Womtrast, (Rg) . The term Wcmmc[sz is given by Eqn 14.

As shown by the flow chart of Figure 17, the achromatic information is used
to compute both a global contrast measured between each region of interest
and the overall working image and a local contrast measured between each
region of interest and its associated neighbourhood. A local contrast and a
global contrast are calculated in the same way from the chromatic
information.

The final measure of the colour contrast is given by Eqn 15.

The colour contrast measure integrates chromatic and achromatic
information weighted by the location of regions of interest. Such an
approach is consistent with the non uniform distribution of photoreceptors

across the human retina.

Results of the colour contrast measure

Figure 19 presents intermediate results used to construct the final measure of
colour contrast. The original image contains high spatial frequencies and has a
global colour mean different to zero. The image has been ‘segmented’ at resolution
2 (Figure 19b). It means that each region of interest R; (each hexagonal patch)
sustains a visual angle of 5° at the selected distance of observation. In the
‘segmented’ image, the colour of 3 patches has been changed (Figure 19c). The
difference from the original colour and the modified one is great for the first patch
(in the brown area at the bottom of the segmented image), moderate for the second
patch and low for the third patch.

Figure 19d presents the measure of the local luminance contrast normalised by
regional and global luminance contrasts. This normalised local luminance has
been calculated with Eqn 13 for each region of interest R; of the image of Figure
19c. The most salient region in terms of luminance is the white patch located in a

more or less brown uniform area.

Figure 19e presents the measure of local colour contrast normalised bv regional
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calculated with Eqn 14 for each region of interest R; of the image shown in Figure
19c¢. The white patch salient in terms of luminance contrast is also identified as
salient in terms of colour contrast. Even if there are a lot of different colours in the
‘segmented’ image, only two patches have a significant colour contrast relative to

their environment.

Chromatic and achromatic information are merged according to their relative
strength to provide the final measure of colour contrast. Only the regions of
interest salient for both local normalised luminance contrast and local normalised
colour contrast are promoted. As shown by Figure 19g, the white patch having a
high local contrast in luminance and a high local contrast in colour is associated
with the highest value of the final measure of colour contrast. The measure of
colour contrast introduced in this paper integrates a modulation based on an
eccentricity function as the one presented in Figure 19f. Such an eccentricity
function simulates the non uniform acuity across the whole visual field of a human

observer.

Figure 20 shows an example of the outcome of measuring colour contrast as
proposed in this paper. Figures 20b and 20c show respectively the result of the
measure of colour contrast without and with the eccentricity function. Then the
complete result presented in Figure 20c locates the highest colour contrasts as they
should be perceived by an observer having his gaze directed to the centre of the
image with a distance of observation such that a set of 7 patches would be projected

on his fovea.

Another example is shown in Figure 21. Likewise Figures 21b and 21c¢ show the
results of the measure of colour contrast without and with the eccentricity
function. Then the complete result presented in Figure 21c locates the highest
colour contrasts as they should be perceived by an observer having his gaze
directed to the centre of the image with a distance of observation such that a set of

7 patches would be projected on his fovea.

In the examples shown in Figure 22 and Figure 23, the parts (c) to (e) have been
observed by five volunteers. Their fixation points have been recorded by an eye
tracking system during a free viewing task. The first four fixation points are
reported on images: the red circles correspond to the first fixation, the green to the
second, the blue to the third and the yellow to the fourth. Eye tracking results
show that the first fixation points are located in the central area of the observed
image when there is no region of interest with a high colour contrast. This central
area corresponds to a visual field of around 15°. Such an area has the size of the

surrounding used in the proposed model. We can see that the more a patch is



important. On the other hand, the more a patch is distant of the gamut of the

overall image, the more it is salient.

Discussion

In this third part of the paper we have proposed a computational method to
measure colour contrast. In order to explore whether the local saliency of a region
influences its colour appearance the proposed approach combines local and global
information and takes into account interactions between chromatic and
achromatic signals. The spatial features of the scene as well as the location of
variations have been integrated in the evaluation of the colour contrast. The
model has been developed to be consistent with human perception. To check the
correlation between results given by the measure of colour contrast and observer
valuations, eye tracking experiments were conducted with five volunteers. The
recorded fixation points have been compared with the location of the highest
values of colour contrast. The first experimental results are very encouraging and
clearly suggest that the measure of colour contrast we have introduced in this

paper is correlated with human perception.

According the authors’ opinion the future of visual attention models will follow the
development of perceptual multiscale saliency map based on a competitive process
between all bottom-up cues (orientation, intensity and colour). Likewise, the
future of visual attention models will pass by the development of new saliency
models which better take into account colour perception through neural
mechanisms. For example, ROI detection based on visual attention mechanisms is

currently an active research area in the image processing community.

General Discussion and Perspectives

The examination of numerous visual assessment results done showed that the

influence of the background on colour appearance is more noticeable:

« for complex images than for images with a simple background (see Tables 1
and 2),

« for complex images with high frequencies than for colour images with low
frequencies or simple images,

« for chromatic images with a large gamut than for less coloured images with

a low gamut.

The visual assessments reported in Tables 1 and 2 were carried out using the
magnitude estimation technique. Other effects on colour appearance due to patch

cizee dictance hetween natchec lichtneee chroma and hne are lece naticeahle than
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From the results and trends observed in this study, simple rules could be proposed
to predict the colour appearance of complex scenes which can serve as a guide for

designers.

For a more precise prediction of the colour appearance of complex images we should
conduct further more specific experimental campaigns, limited to a single
parametric factor study such aslocal saliency in the image, in order to be able to
model the relative influence of each parametric factor independently of any other
parametric factor. In order to explore whether the local saliency of a region
influences its colour appearance we introduced a new protocol of experiments (see
Figures 15 and 16) and developed a computational model of colour contrast. The
next step of our study will consist of validating the proposed model and the
parametric factors used from experiments carried out. The objective will be to use
the three viewing parameters, background, surround and image content, as inputs
to colour appearance models. This means calculating new colour appearance

attributes into measurable objective mathematical entities.

Conclusions

In this paper, we have investigated whether the colour perception is affected by the
distribution and the spatial organisation of colours in a complex image. We have
analysed the influence of scene content and of background types on the colour
appearance judgement. It was concluded that, for a more precise prediction of the
colour appearance of complex images one should conduct further experiments
campaigns more targeted, limited to a single parametric factor study such aslocal
saliency in the image, in order to be able to model the relative influence of each

parametric factor independently of any other parametric factor.

The influence of the local colour saliency on the colour appearance was also
analysed. The proposed model integrates in a single model the influence of average
colour perception and the interactions between local and global spatial structures
according to the visual eccentricity. The measure of colour contrast relies on a set
of parameters organised in a hierarchical structure. The computation is based on
spatial criteria and integrates low-level factors calculated on defined regions

relatively totheir local and global neighbourhoods.
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