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Spectral imaging is an emerging technology for measuring spectral power distributions (SPDs) of 

electromagnetic radiation over a two-dimensional spatial domain. Within the visible light wavelength 

domain, spectral imaging measures light and colour with greater accuracy than digital photography.  

However, high cost limits its accessibility. Accordingly, a low-cost method was developed using 

commercially-available hardware – primarily a DSLR camera and a set of narrow bandpass filters. The 

quantity of filters was minimised to a total of seven, set by the dimensionality of SPDs, the spectral 

sensitivities of eyes and cameras, and commercial availability. Camera spectral sensitivity was 

measured using this same filter set, a colour chart, a spectrophotometer, and noon daylight modelled 

as CIE D65. The RAW photo format was used to access unprocessed sensor data. Independent SPD 

measurements from each colour channel were fused as a sensitivity-weighted average for efficient and 

continuous interpolation between colour channels with a high signal-to-noise ratio. Images were 

reconstructed from SPDs with standard observer functions. The method was demonstrated with a 

Canon 650D DSLR camera, a set of Thorlabs one-inch narrow bandpass filters, an X-Rite ColorChecker 

chart, and a Spectro 1 spectrophotometer. Accuracy was validated by quantitative comparison against  

ground truth SPD measurements and qualitative assessment of reconstructed images. The total filter 

cost was $715, plus $405 to measure camera sensitivity . 
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Introduction 

Background 

Colour perception results from the interaction of an illuminant, optionally a reflective surface, and 

an observer. Humans are trichromats, hav ing three-dimensional colour perception, over the v isible 

light wavelength spectrum of 400 to 700 nm. Human colour perception is significantly rank-deficient 

even within its wavelength limits, as shown in the subsections Dimensionality of reflectance spectra 

and Curve reconstruction.  
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Whereas digital photography produces a three -dimensional RGB (red, green, blue) colour image, 

spectral imaging produces a k-dimensional hyperspectral datacube (HSDC), ty pically with 10 ≤ k ≤ 60; 

wavelength channels replace colour channels. HSDCs are informationally complete and observer 

independent, providing a more accurate representation of colour, and enabling greater optionality in 

subsequent image processing. 

Spectral scanning is the simplest of several methods for generating HSDCs, wherein a 1 -channel 

intensity  image is captured at a series of regularly-spaced, narrow, non-overlapping wavelength bands. 

These images are subsequently “stacked” to form the final HSDC. Though spatially  high -resolution 

relative to other methods, spectral scanning experiences “spectral smearing” if the subjects or sensor 

move during the image capture process, due to the characteristically large temporal distribution of the 

images. By  comparison, so-called “single-shot” methods use various diffraction techniques to capture 

the entire HSDC simultaneously, but at lower spatial resolution.  

A survey of commercially-available hyperspectral cameras1  showed a price range of $20,000-25,000, 

whereas consumer cameras such as DSLRs and MILCs cost 1 -10% of this amount. 

 

Related work 

Consumer cameras are not capable of spectral imaging as -is, but various researchers have 

demonstrated this capability nonetheless with various hardware and software methods. Such methods 

can generally be classified as multi-shot spectral scanning or single-shot diffraction grating. 

Cosentino [1] used 12 bandpass filters and a modified camera to produce HSDCs, comparing results 

favourably to a commercial hyperspectral camera. Berns et al. [2] used a large-format camera and an 

optimised set of filters, performing singular value decomposition on a dataset of 2,500 reflectance 

spectra to reduce the quantity of filters to a total of six .  

Baek et al. [3] developed a single-shot method using a custom prism objective. Combined spatial  and 

wavelength information was separated by detection of “spectral cues” present “only  around object 

edges”. Habel et al. [4] similarly developed a single-shot diffraction grating method, with reconstructed 

images limited to 120 × 120 pixels. 

Oh et al. [5] developed a novel non-diffraction single-shot method using three different synchronised 

digital cameras, exploiting small differences in their sensitiv ities. An image registration process was 

used to align images between cameras using planarity. Principa l component analysis was performed on 

a database of 1 ,257 Munsell reflectance spectra to create a low-dimension vector space for describing 

SPDs as linear combinations. 

The method described in this paper is believed to be novel in its low cost, high spatial resolution, use 

of unmodified commercially-available hardware, and independence from training data.  

Methods 

Dim ensionality of reflectance spectra 

Parkkinen et al. [6] measured the reflectance spectra of 1 ,257 standard Munsell colour swatches over 

400 to 7 00 nm. Noting that “the components of a color spectrum are highly correlated”, the authors 

performed principal component analysis on these spectra, producing a set of reflectance eigenvectors. 

                                        

1  Pix elTeq SpectroCam-VIS, BaySpec GoldenEye, Resonon Pika L, Specim IQ. 
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It was found that these spectra could be reconstructed as linear combinations of eight or fewer 

eigenvectors. This result indicates that reflectance spectra are up to eight-dimensional over the v isible 

light spectrum, with a characteristic wavelength resolution of approximately (700 nm - 400 nm) / 8 = 

37 .5 nm. 

 

Curve reconstruction 

Sampling an SPD by  spectral scanning with narrow bandpass filters produces a sparse sample; the 

value of the SPD is measured only at certain regular intervals. Between these, the value of the SPD is 

not measured, but can be approximated due to the limited dimensionality of SPDs. This process was 

modelled as a curve reconstruction problem, i.e. given a sparse sampling of an unknown curve, 

reconstruct the curve by  means of an appropriate interpolation scheme such that the reconstructed 

curve matches a theoretical measured curve. This concept is shown in Figure 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Curve reconstruction for SPD of ColorChecker swatch #2 under D65 illuminant for varying sample 

quantity. Samples are denoted with vertical lines, with cubic interpolation between samples . 

 

To determine the optimal filter quantity and interpolation scheme, two reflectance datasets were 

considered: the 8 eigenvectors developed by  Parkkinen et al. [6] with 5 nm resolution, and the 24 

reflectance spectra measured from an X-Rite ColorChecker Classic [7]. 

ColorChecker reflectance spectra were measured using a Spectro 1 spectrophotometer with a domain 

of 400 to 700 nm and a resolution of 10 nm. Three scans were performed and averaged for each swatch, 

with near-perfect repeatability across trials. These spectra were validated by calculating the 

CIEDE2000 colour difference (denoted ΔE00) against the manufacturer's published Lab colour values 

under CIE D50 illuminant with a 2° observer [7]. The error for all 24 swatches was 1 .39 ± 1 .06 ΔE00, 

showing good agreement. Research has shown significant variance in ColorChecker re flectance spectra, 
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with standard deviations of 0.1-9.1 percentage points over 400-700 nm [8], though the manufacturer 

does not publish spectra or tolerances. 

Per subsections Dimensionality of reflectance spectra  and Filter set design, both 30 and 40 nm 

resolution were considered. The reconstruction domain was taken as 420-660 nm per subsection Filter 

set design. The filters were assumed to be of sufficiently  narrow bandwidth that t hey measure at their 

exact centre wavelength (CWL). Linear, spline, and cubic  interpolation were considered. The quality of 

the reconstruction was calculated as the residual sum of squares (RSS) for all curves, multiplied by the 

wavelength resolution, divided by the quantity of samples in the dataset. This calculation was performed  

for both reflectance spectra and simulated SPDs, with the latter modelled as the element-wise product 

of reflectance and the D65 illuminant scaled to the range of 0 -1 . This normalised error metric allowed 

direct comparison between datasets. 

Several observations were made. 30 nm resolution outperforms 40 nm resolution in all cases. With 

40 nm resolution, cubic interpolation is optimal. With 30 nm resolution, cubic interpolation is at least 

near-optimal. Optimised error at 40 nm is 1 -3× larger than at 30 nm, but both are small in an absolute 

sense. Reflectance (not illuminant) dominates the quality  of the curve reconstruction. Thus, 40 nm 

resolution and cubic interpolation were chosen for curve reconstruction.  

 

Filter set design  

Manufacturers of narrow bandpass filters include Thorlabs, Edmund Optics, and MidOpt. Within the 

v isible light spectrum, CWL is generally discretised as whole-number multiples of 10 nm, i.e. 400, 410, 

420, ..., 700 nm. 

The centroid of the visible light spectrum may be defined at the wavelength corresponding to 50% on 

the cumulative density function (CDF) of the sum of the CIE 2° tristimulus ob server functions [�̄�, �̄�, �̄�] 

[9]. Rounding to the nearest 10 nm per commercial availability, this centroid is 540 nm.  

It can be shown that the wavelength range of 420 to 660 nm encompasses 97% of the area under the 

CIE 2° and 10° tristimulus observer functions [9], thus: 

 

∫ (�̄� + �̄� + 𝑧)
660 nm

420 nm 𝑑𝜆 ≈ ∫ (�̄� + �̄� + 𝑧)
∞

−∞ 𝑑𝜆     (1) 

 

This range is also evenly divisible into 40 nm inc rements, and intersects the centroid of 540 nm. 

The final specification is the full-width half max (FWHM), or bandwidth. As discussed in subsection 

Curve reconstruction, reducing FWHM increases the wavelength accuracy of measurements to the 

CWL. The reduction in overall transmission associated with a low FWHM was compensated by  

increasing the exposure, as discussed in subsection Photographic aspects. 

The set of filters chosen are shown in Figures 2 and 3, and have the following properties: 

 

Quantity  7  
Manufacture Thorlabs 
CWL 420 to 660 nm 
CWL spacing 40 nm 
FWHM 10 nm 
Part numbers FB420-10, FB460-10, etc. 

Diameter One inch 
Cost (total) $686 (+$29 case) 
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Figure 2 (left): Canon 650D camera with 40 mm prime EF lens and set of Thorlabs  narrow bandpass filters. 

Figure 3 (right): Thorlabs narrow bandpass filter transmission spectra,  per manufacturer’s datasheets [10]. 

 

Cam era response linearity 

RAW values reported from cameras may  be thought of as photonic measurements. A simple under-

exposure experiment found that pure black (i.e. zero photons) corresponds to RAW = 2,048 , commonly 

referred to as the black level. In principle, over-exposure and saturation occur at the maximum value 

permitted by the bit depth: 2 1 4 = 16,384. In practice, saturation was observed at values ranging from 

12,000-16,384. Between these limits, response linearity was verified by photographing a ColorChecker 

chart under noon day light while independently varying shutter duration and ISO. The trichromate 

mode of the #19 white swatch was calculated for each photo as the measurement of interest. Mode was 

chosen for its robustness against hot and dead pixels.  

 

Figure 4 (left): Reported RAW values for #19 white ColorChecker swatch in noon daylight without filters; f/22, 

ISO 100, 1/4,000-1/30 sec. 

Figure 5 (right): Photonic transfer functions for data in Figure 4. 

 

These measurements are shown in Figure 4. For ideal linearity, the RAW value is proportional to the 

product of shutter duration and ISO, all else equal. Accordingly, an idealised RAW value was calculated 

for each reported RAW value, by linearly scaling the product of shutter duration and ISO to the RAW 

value range of 2,048-12,000. This relationship was expressed as a set of transfer functions, shown in 
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Figure 5. The shape of these transfer functions indicates that the sensor has a linear response up to 

saturation. Similarly, varying ISO with a constant shutter duration exhibited near-perfect linearity 

(f/22, ISO 100-12,800, 1/2,000 sec).  

 

Cam era spectral sensitivity 

Camera spectral sensitivity was calculated by photographing a ColorChecker chart through each filter 

under cloudless noon daylight modelled as D65. Noon daylight was chosen for its roughly neutral SPD, 

availability of standard data, and accessibility. Images were captured on 2021-02-21 at 12:22 pm in an 

open field in Cambridge, Massachusetts.  

For an ideal linear response as shown in subsection Camera response linearity, sensitivity may be 

described generally as: 

 

Sensitivity = 𝑆 =
Value Measured

 Value Actual
=

𝑉𝑀

𝑉𝐴
     (2) 

 

V M was calculated as the mode of the RAW values inside a square  inset slightly  from the swatch 

perimeter, minus the black level. VA was calculated as: 

 

𝑉𝐴 = ∑ 𝐼𝜆 (𝜆)⊙𝑅(𝜆)⊙𝑇(𝜆)      (3) 

  

with  = wavelength, I = scene illuminant, R = swatch reflectance, T = filter transmission and ⊙ = 

element-wise multiplication. 

 

Figure 6 (left): Non-dimensional trichromate spectral sensitivity of Canon 650D camera from ColorChecker 

under D65 illuminant. Faint coloured lines correspond to individual swatches; solid black lines correspond to 

weighted averages for all swatches . 

Figure 7 (right): Comparison of sensitivities for various Canon cameras  [11]. Curves were normalised so that 

the maximum sensitivity for each camera is equal to unity. 

 

Sensitiv ity for all colour channels and wavelengths was calculated from each swatch, as shown in 

Figure 6. These per-swatch sensitivity curves were fused as a weighted average using V M to weight 

calculated sensitivities in proportion to their signal-to-noise ratio. 
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The result is a set of three sensitivity curves, [𝑆𝑅
(𝜆), 𝑆𝐺

(𝜆), 𝑆𝐵
(𝜆)]. As shown in Figure 7 , this result is 

consistent with values from literature for similar Canon cameras.  

 

Photographic aspects 

A prime (i.e. non-zoom) lens, tripod, quick release plate, and remote shutter were used to minimise 

movement of the camera while capturing the photo stack. Because filter cost is proportional to filter 

area, the choice of lens is the primary  means of cost reduction. The measurement of interest is the 

diameter of the objective at the outer end of the lens, as it sets the minimum filter diameter. For 

consumer Canon EF lenses, this ranges from approximately 20 to 60 mm. The theoretical fi lter cost at 

these extremes differs by nearly an order of magnitude; 60 2 / 202 = 9. The lens selected has an outer 

objective diameter of 20 mm, a focal length of 40 mm, and an aperture of f/2.8. It is shown in Figure 2. 

The filters discussed in subsection Filter set design are unthreaded, and used by resting them against 

the camera lens by hand, transferring minimal force and maintaining alignment of the photo stack. The 

glass optics of both the lens and filters are recessed from their cases, preventing abr asion. The filters 

were stored in a case in order of ascending wavelength, and cy cled through in sequence manually. 

Depending on the nature and luminance of the scene, ty pical camera settings were f/2.8 -10, ISO 100-

400, and 1/4 - 1/500 second. Bright exposures were required to compensate for the low transmission 

of the filters. These settings were adjusted to “expose to the right”, i.e. fully utilise the available set of 

values without saturating the upper limit, thereby maximising the signal-to-noise ratio in the measured 

values. 

The open-source dcraw utility was used to extract RAW values from the .CR2 file format [12]. The 

modifier string -D -4 -j -t 0 was used to specify  that the extracted RAW values were unprocessed sensor 

measurements.  

 

-D No value scaling 

-4 Linear 16-bit 

-j No stretching or rotating pixels 

-t 0 No image rotation 

 

The RAW sensor measurements were then demosaiced into R, G, B colo ur channels with a Bayer 

filter pattern of rggb.  

 

SPDs from  RAW photos 

By  rearranging the general expression of sensitivity in subsection Camera spectral sensitivity: 

 

𝑉𝐴 =
𝑉𝑀

𝑆
       (4) 

For a linear sensor response, 𝑉𝑀 ∝ 𝑃, with P denoting the RAW photo value minus the black level. By  

inspection, 𝑉𝐴 ∝ SPD . Using proportionality and non-dimensionality, this is rearranged and substituted 

as:  

 

SPD = 𝑉𝐴 =
𝑃

𝑆𝑇
       (5) 
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The denominator ST is most accurately and generally expressed as a dot product over the wavelength 

domain rather than a scalar product at the CWL, i.e. S(λ ) · T(λ ) rather than S(λ =CWL) * T(λ =CWL). 

At an arbitrary pixel and CWL, each colo ur channel produces an independent SPD measurement, 

collectively given as:  

 

SPD = [
𝑃𝑅

𝑆𝑅⋅𝑇
,

𝑃𝐺

𝑆𝐺⋅𝑇
,

𝑃𝐵

𝑆𝐵⋅𝑇
]     (6) 

 

These measurements are theoretically equal, but in practice differ due to various sources of error. 

They  are fused as a sensitiv ity-weighted average:  

 

𝑆𝑃𝐷 =
1

𝑆𝑅+𝑆𝐺+𝑆𝐵
(

𝑃𝑅𝑆𝑅

𝑆𝑅⋅𝑇
+

𝑃𝐺𝑆𝐺

𝑆𝐺⋅𝑇
+

𝑃𝐵𝑆𝐵

𝑆𝐵⋅𝑇
)    (7 ) 

 

Calculating SPD as a sensitiv ity-weighted average continuously interpolates between colour channels 

as a function of wavelength. Since SR+SG+SB > 0 for all λ , div ide-by-zero is precluded. This formulation 

was generalised spatially by using matrices in place of scalars for P, neglecting vignetting, dark-frame 

effects, and other spatially-related sources of error. Subsection Lens glare  includes a discussion on lens 

glare specifically. 

The HSDC was first calculated in a sparse fashion, only  at the CWLs of the filters. The full (i.e. non -

sparse) HSDC was then calculated by cubic interpolation in the wavelength domain between the filter 

CWLs per subsection Curve reconstruction.  

Results 

Validation 

The method was validated by  comparing ColorChecker SPDs and ΔE00 between camera vs. 

spectrophotometer, with the latter taken as ground truth and modeled as R(λ ) ⊙ I(λ ). Because the two 

sets of curves, SPDcamera and SPDspectrophotometer, are non-dimensional, their ranges were aligned with a 

single scalar gain for comparative purposes, such that the sum of the residuals was zero. This scalar gain 

α was found by  the bisection method such that:  

 

∑ 𝛼𝜆 SPDcamera − SPDspectrophotometer = 0    (8) 

 

Standard equations were used to derive XYZ, Lab, and RGB colours from SPDs, with D65 as both the 

scaling factor and white point [13].  

Results are shown in Figures 8-10. The colour error for all swatches is 2.44 ± 1.65 ΔE00, with more 

than 90% of swatches within 1 .75 ± 0.96 ΔE00. The primary outlier is #19 white, which shows a good 

match in terms of normalised distribution, but a poor match in magnitude and thus luminance. This is 

best explained as an artefact of glare or other lighting non-uniformities, amplified by  the high 

reflectance of the colour white. The SPDs of the matte black background showed a spatial luminance 

variance that matched the SPD magnitude error. 
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In the more general case of an unknown illuminant, colours are dimensionalised by linear scaling in 

the luminance (or intensity) dimension to the limits of the colour space. A common strategy is to allow 

a small amount of saturation at the limits of the colour space, thereby avoiding hot and dead pixels. 

Reconstructed images in this paper are scaled such that the bottom and top 1% of pixels are saturated, 

with black and white defined as 5% and 95% (i.e. RGB [13 13 13], [242 242 242]) res pectively.  

Figure 8 (left): Distribution of colour errors shown in Figure 10. 

Figure 9 (right): Reconstructed image of ColorChecker chart; f/2.8, ISO 100, 1/400 sec . 

 

Figure 10: Comparison of ColorChecker SPDs and colours as measured by spectrophotometer (solid, left) and 

camera (dashed, right). A single scalar gain is applied to align the two sets of curves. Plots are scaled 400 to 

700 nm along x-axis, and non-dimensional along y-axis. 
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Lens glare  

Lens glare is a phenomenon characteristic of optical imaging sy stems resulting from scat tering of 

light within the lens [14]. Within the context of spectral imaging, glare is an undesirable source of 

spatial-spectral error, “especially for darker pixels and pixels close to light sources or bright patches”. 

Signoroni et al. demonstrated that hyperspectral cameras are susceptible to significant glare -induced 

error by comparing measurements against a spectrophotometer, taking the latter as ground truth for 

its absence of spatial-spectral effects. The authors showed that glare may  be quantified by  proxy of its 

attenuation of measured contrast, particularly for greyscale colours spanning black to white. 

An experiment was performed to induce, isolate, and quantify glare effects for the p roposed system. 

The ColorChecker chart was placed indoors in natural light. A 40 Watt, 340 lumen incandescent bulb 

was placed out of frame, with its axis directed at the camera’s lens. The swatches, lens, and bulb were 

roughly coplanar. This setup is shown in Figure 11 . SPDs were measured per subsection SPDs from 

RAW photos with the bulb on and off under the same camera settings of f/2.8, ISO 400, 1/2 sec . 

The brightness, or perceived luminance, was calculated for each greyscale swatch as ∑ 𝑆𝑃𝐷(𝜆) ⊙ 𝜆

𝑦(𝜆), with 𝑦(𝜆) per the CIE 2° XY Z observer functions. These values were compared against ground-

truth brightness, calculated as ∑ 𝑅(𝜆) ⊙ I(𝜆) ⊙ 𝑦(𝜆)𝜆  per spectrophotometer measurement discussed 

in subsection Curve reconstruction, with I(𝜆) taken as CIE D65. Brightness values were normalised 

such that white had a brightness of 1 .0 for all three datasets. Results are shown in Figure 12. 

 

Figure 11 (left): Experimental setup for measuring lens glare. 

Figure 12 (right): Comparison of relative brightness values per SPDs as a function of lens glare. 

 

Contrast was calculated as the measured brightness difference between black and white. With the 

bulb off, contrast was 97.7% of ground truth, with the error attributed to glare from pixels and lighting 

non-uniformity. With the bulb on, contrast decreased to 82.8% of ground truth, with the further 

attenuation attributed to induced glare. These values are consistent with findings of Signoroni et al. [14] 

As discussed in subsection SPDs from RAW photos, the assumption of spatial-spectral independence 

of pixels significantly simplifies SPD computation, and is consistent with the methodology of 

commercially-available hyperspectral cameras [14]. Detecting and normalising generalised glare effects 

is a complex image processing problem that is left beyond the scope of this paper. In practice, glare can 

ty pically be limited to an acceptably small degree by following standard best practices of photography .  
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Reconstructed images  

Several scenes are shown in Figure 13 with subjects and illuminants that represent ty pical colour 

perception. Shown for each scene is the reconstructed image (left column) and a sparse sampling of the 

HSDC (right column). Each HSDC was sampled at an evenly -distributed 10 × 7  square mesh with 70 

nodes total, showing a characteristic set of SPDs that are coloured according the reconstructed image.  

 

Figure 13: Reconstructed RGB images and characteristic sets of SPDs for several scenes. Plots are scaled 420 to  

660 nm along x-axis, and non-dimensional along y-axis. Filter CWLs are denoted by vertical lines . 

 

The still life (first row) exhibits blue-red contrast apparent in the bimodal distribution of the SPDs. 

A relatively high f-stop was needed to keep the scene in focus, which required increasing both ISO and 
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shutter duration. The lower signal-to-noise ratio inherent with higher ISO can be seen in the faint high-

frequency noise pattern. The camera settings were f/10, ISO 400, 1/4 sec.  

The landscape (second row) exhibits both colour and luminance contrast between sky and ground. 

Minor “spectral smearing” can be seen around the edges of the foliage due to natural movement. The 

sky  exhibits a characteristic D65 -like distribution. Higher overall luminance enabled lower ISO and 

shutter duration, reducing noise. The camera settings were f/2.8, ISO 200, 1/200 sec.  

The industrial scene (third row) exhibits correlation between SPDs that is consistent with the y ellow-

red light characteristic of sunsets. The camera settings were f/4, ISO 200, 1/60 sec.  

Discussion 

This paper demonstrates a method for spatially high-resolution v isible light spectral imaging at less 

than 10% the cost of a commercial hy perspectral camera, using commercially -available hardware. 

Results are validated quantitatively and qualitatively against ground truth. Key  aspects of novelty 

include characterisation of SPD dimensionality, curve reconstruction from sparse samples, and fusion 

of trichromate measurements. This method significantly  improves access t o the field of spectral 

imaging, and enables further research into the field of spectral image processing . 
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