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We proposed an optimal combination of primary spectra in six-primary display to reproduce the great
majority of spectra from natural objects. We applied normal distribution function to simulate the basic
bands of six-primary display, and then we simulated a large data set by least-squares method created
from the product of Standard Object Color Spectra (SOCS) database and the irradiance data of Judd
et al. [1]. A Good final result was obtained with the averaged root-mean-square error (RMSE) from the
simulated sample being 0.0132, demonstrating a significant improvement compared to previous
studies. We also compared this method to other multi-spectrum methods (Ajito et al. [2], Long and
Fairchild [3], and non-negative matrix factorization (NMF)) for an expanded sample of SOCS data.
The results showed our proposed method had an appropriately sized area in the CIE (u′, v′)
chromaticity diagram, also with smooth spectral distribution and good reproduction. The spectral
radiance distributions can be reproduced well, especially in natural spectral data with the proposed
spectral bands.
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Introduction

In the past 10 years,  a vigorous development has seen in display industry,  from cathode ray tube
(CRT) to liquid crystal display (LCD). The liquid crystal panels evolved from the earlier twisted
nematic (TN) [4] to multi-domain vertical alignment (MVA) [5] and in-plane switching (IPS) types.
The  display  devices  have  become  not  only  thinner,  but  also  with  expanded  viewing  angles  [6].  The
maximum display resolution has also been advanced, from the previous standard-definition (SD) to
high-definition  (HD),  and  then  to  the  current  4K  and  8K  resolutions,  demonstrating  significant
improvement and evolution. In particular, the advances in wide-gamut displays, namely displays with
wider colour gamut have been prominent and rapid.
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The development of wide-gamut displays has mainly divided to two directions. One is changing the
display module to enhance the display colour gamut. For example, from the most traditional cold
cathode fluorescent lamp (CCFL) used by liquid-crystal display (LCD) to the current active-matrix
organic light-emitting diode (AMOLED) displays, the displayable gamut has increased by a factor of
roughly  1.3  relative  to  the  sRGB  colour  space  [7].  The  other  is  expanding  the  range  of  displayed
colours  through  adding  primary  colours  to  the  panels.  It  is  also  called  the  multi-primary  display
technology. For example, Konig et al. proposed a method for defining the physical dimension of multi-
primary display [8]. Over the past decade, increasingly intense research efforts and industrial
investment have been devoted to this area [9-16].  As a result,  four- and five-primary colour displays
are now available in marketing.

With the development of multi-primary display technology, correct colour reproduction for display
devices has become a key topic. In particular, effective spectral colour reproduction has become
increasingly important as the display panels, colour filters, and backlights continually evolve. Because
of the wider colour gamut, this technology is widely used in many areas nowadays. These examples
include the reproduction of object surface textures, materials, ancient relics, and paintings; or
applications in new light sources, such as light-emitting diodes (LEDs) and organic LEDs (OLEDs)
backlights, which could reproduce more colours rather than traditional backlights.

Multi-primary displays also have great potential  for more accurate colour reproduction. They can
precisely represent the spectral property of objects and scenes with their multiple channels.
Sometimes the colour appearance of the devices does not match even when the measured colorimetric
values,  such  as  CIE  (x, y)  or  CIELAB  are  the  same.  This  is  due  to  metamerism  in  the  power
distributions associated with observers with different spectral sensitivities. Although multi-primary
displays  can  never  completely  solve  the  problem of  metamerism,  it  can  produce  a  spectrum at  each
pixel  in  order  to  be  closer  to  that  of  the  original  scene.  For  this  purpose,  spectral  reproduction  is
important  as  it  can  achieve  the  best  colour  reproduction  and  largely  reduce  the  problem  of
metamerism. In this article, we focus on the combination of primary colour spectra that can most
adequately reproduce the spectra of natural objects in a multi-colour environment.

Generally, the object colours perceived by the human eye could not be perfectly reproduced by
displays due to colour gamut limitation. In a previous work, we developed an algorithm of RGBCMY
six-primary display, and our computational simulations revealed the reproduction phenomenon of the
object  colours  changing  their  saturation  [17].  Among  the  six  kinds  of  colour  reproduction  methods
with different objectives as defined by Hunt [18-19], the spectral and preferred colour reproductions
are  the  most  difficult  approaches  for  achieving  a  perfect  reproduction.  Therefore,  in  this  study,  we
concentrate  on  the  spectral  reproduction  in  displays  and  determine  the  optimal  combination  of  six
primary colour spectra by using mathematical methods.

Similar approaches have been used by other researchers. Ajito et al. and Long and Fairchild used
two  projectors  with  different  colour  spectrum  combinations  to  reproduce  six  primary  colours  and
discussed the reproducibility of object colours or existing colour chips [2-3]. Ben-Chorin et al. used
the singular value decomposition (SVD) method based on colour chips to find the foundations of
natural colours, and then used the non-negative matrix factorization (NMF) method to obtain multi-
primary combinations [20]. Their results were shown to have the smallest differences from natural
colours among five to seven combinations. More recently, this approach has been used to design a real
multi-primary display [21], and the colour differences between the reproduction and the sampled
pictures were extremely small.

The  above  explanations  concern  the  reproduction  of  multispectral  and  multi-colour  data.
Compared  to  theories  mentioned  above,  the  approach  proposed  in  this  study  presents  two  radical
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features. Firstly, different from some previous studies that used the entity colour filters as the basis
spectra to reproduce the spectral radiance distribution of object [10, 21-22], our multispectral design
concept of this study is based on the primary colours of a simulated six-primary display we had
developed [17]. Therefore, in designing the initial values of the spectra, we used mathematical
methods to establish six spectra, for which six primary colours (Red, Green, Blue, Cyan, Magenta, and
Yellow) at their corresponding positions in the visible light spectrum were considered. Secondly, the
reference  samples  used  in  this  study  are  obtained  via  combining  natural  reflectivity  data  and  light
sources.  The  reflectivity  data  came  from  the  Standard  Object  Color  Spectra  (SOCS)  database
published by the Japanese Industrial Standards Association in 1998 [23], which contains a total of
54240 colours obtained from the nature world. Some of the previous studies used fewer than 500 sets
of reference data, possibly affecting the accuracy of the final results. In contrast, we used more than
3000 reflectance samples taken from the SOCS data.  Daylight data from the work of Judd et al. [1]
was  used  for  the  light  sources.  However,  since  we  used  the  Matlab  software  package  in  this  study,
calculation with all combinations of light sources and reflectance data would be quite time-consuming
without using a supercomputer. Therefore, the colour temperature of the daylight illumination was
sampled in the 4000–9000 K range at intervals of 1000 K, in order to ensure that the spectral results
can completely reproduce most of the natural colours.

The NMF method is a common solution for modelling multispectral data. Giving the spectral data
that must be completely reproduced, this method can be used iteratively to obtain the best
combination set.  Nevertheless,  the obtained result  is  only for the given sample data,  which probably
could  not  completely  reproduce  the  primary  colours  of  light  sources  in  the  real  world.  Hence,  we
started from the perspective of a variable-wavelength light source, using a normal distribution
function (similar to a bell-shaped distribution) to simulate each colour spectrum and fixed the hues of
the  RGBCMY  colours.  The  normal  distribution  was  determined  by  adjusting  the  σ (width)  and  μ
(wavelength) variables. In consider of all possible spectral combinations, no iterative method was
used in the calculations.

Construction of target spectra

Colour reflectance data

Firstly,  we  provided  a  detailed  description  of  the  data  used  in  this  study.  In  Introduction,  it  was
noted that some studies expanded display colour gamut and the achievement of higher display
resolution allowed some devices to reproduce the colours of natural objects. However, these
reproductions  were  imperfect  due  to  a  small  number  of  sampling.  Therefore,  we  chose  the  SOCS
database as our golden sample. The SOCS database is a spectral reflectance database containing
54240 spectra of objects including Faces, Flowers, Graphics, Krinov Data, Leaves, Paints, Pigments,
Photos, Printers, and Textiles. The size of each SOCS category is listed in the second column of Table
1.  We chose a total  of  3725 colours from all  categories,  which excluded the Krinov dataset due to its
incomplete wavelength sampling. We extracted almost all of the categories with fewer samples as
Flowers, Leaves, Paints, and Pigments (the third column of Table 1). For the Faces category, different
skin colours were extracted (races: African, Caucasian, and Asian) including both genders and
different parts of the face. We only extracted representative samples for the Graphics, Printers and
Textiles categories. Figure 1 shows the plots of all selected spectral reflectance data under D65
daylight  on  the  CIE (u′, v′) chromaticity diagram, indicating that the distribution exceeds the sRGB
colour gamut.
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Next,  we  used  the  data  within  the  wavelength  range  of  400–700  nm  for  principal  component
analysis (PCA). Because the general spectral reflectance was measured by measuring instruments, in
addition  to  big  errors  on  the  low-  and  high-frequency  ends,  the  spectral  reflectance  itself  also  had
some  non-smooth  parts.  This  would  result  in  additional  errors,  so  we  used  the  first  3  principal
components  of  SOCS as  whole  spectral  radiances  instead  of  the  original  SOCS data.  The  method of
PCA was proposed in 1901 by Karl Pearson and was developed by Harold Hotelling in 1933 [24]. Its
main purpose is to find a linear combination of variability, that the PCA values possess their original
variable information. The most important thing is, it could replace the original variable information
by few of non-overlapped PCA values.

Categories Number of assembled data Number of chosen data
Faces 9461 280

Flowers 148 148
Graphics 30624 438

Krinov Data 370 0
Leaves 92 92
Paints 336 336

Pigments 231 229
Photos 2304 632

Printers 7856 855
Textiles 2818 715
Total 54240 3725

Table 1: Number of data for each category in SOCS database.

We found that the first three principal components and the mean of selected SOCS data, shown in
Figure 2, could represent all reflectance data well with the respective contributions of 54%, 22%, and
14%. For more accurate reproduction of spectral reflectance, additional principal components
accounted  for  most  of  the  remaining  10% variability  in  the  data.  The  4th,  5th,  and 6th  components
accounted  for  additional  4%,  2%,  and  1.4%  of  the  variance,  respectively.  While  the  4th  principal
component is not negligible, previous studies have employed three components for analysis [25-27].

Furthermore, it has been suggested that three components are necessary and sufficient [28-29].
Moreover, the inclusion of more principal components would incur high-order and very complex
calculations, which may introduce errors and preclude us from finding the best combination of bands.
Therefore, only the first three principal components were used in this study.

The reproduction of reflectance data (RE) can be described as in Equation 1. R1, R2, and R3 indicate
its first three principal components, and തܴ denotes the mean of all the data we used. N1-N3 are  the
weight values obtained from target reflectance, using the least-squares method. The next step is
assessing the closeness between the original (OR) and reproduction (RE) data by using the root-mean-
square error (RMSE) as shown in Equation 2.

ܧܴ = ( ଵܰ ଵܴ + ଶܴܰଶ + ଷܴܰଷ + തܴ) (1)

ܧܵܯܴ = ට(ைோభିோாభ)మା(ைோమିோாమ)మା⋯ା(ைோିோா)మ


 (2)

where n has a value of 31 to correspond to the 31 wavelengths between 400 and 700 nm in 10-nm
intervals that were sampled in a spectrum.
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Figure 1 (left): Colour distribution of selected SOCS data.
Figure 2 (right): The first three principal components and the mean of selected SOCS data.

Then, we compared our PCA data (shown in Figure 2) to that reported by Vrhel et al. [30], whose
dataset contained 354 artificial and natural objects. We used the method of quartiles to examine the
averaged  RMSE  distribution  for  both  dataset.  The  comparison  is  shown  in  Table  2.  For  clear
presentation,  the  averaged  RMSE  values  are  multiplied  by  a  factor  of  100.  The  median  averaged
RMSE  values  for  our  data  and  Vrhel et al.’s  data  are  1.4169  and  1.2401,  respectively.  The  overall
averaged RMSE values are less than 3.2 in both cases.

PCA Method First quartile (Q1) Median (Q2) Third quartile (Q3)
Proposed 0.6375 1.4169 2.3867

Vrhel et al. 0.4044 1.2401 3.1925
Units: averaged RMSE × 100

Table 2: Comparison of results from the proposed method and Vrhel et al.’s method.

Illumination data

Secondly,  Equations  3-6,  derived  by  Judd et al.  [1]  in  1964  were  used  to  obtain  the  spectral
distribution of daylight data. The colour temperatures were divided into two parts: a lower region of
4000-7000 K and a higher region of 7000-25000 K. These data can also be represented by the PCA
results (SD).  The  distributions  of S0, S1, and S2 (the  average  of  the  daylight  data,  the  first  principal
component,  and  the  second  principal  component,  respectively)  are  shown  in  Figure  3.  Here, Tc

denotes the colour temperature, xD and yD represent the CIE (x, y) colour coordinates, M1 and M2 are
the weight values of S1 and S2, respectively.

Region of 4000-7000 K:

ݔ = −4.6070 ଵవ

்
య + 2.9678 ଵల

்
మ + 0.09911 ଵయ

்
+ 0.244063; ݕ	 = ଶݔ3.000− + ݔ2.807 − 0.275	 (3)

Region of 7000-25000 K:

ݔ = −2.0064 ଵవ

்
య + 1.9018 ଵల

்
మ + 0.2478 ଵయ

்
+ 0.237040; ݕ	 = ଶݔ3.000− + ݔ2.870 − 0.275	 (4)
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ଵܯ = ିଵ.ଷହଵହିଵ.ଷ௫ವାହ.ଽଵଵସ௬ವ
.ଶସଵା.ଶହଶ௫ವି.ଷସଵ௬ವ

; ଶܯ	 = .ଷିଷଵ.ସସଶସ௫ವାଷ.ଵ௬ವ
.ଶସଵା.ଶହଶ௫ವି.ଷସଵ௬ವ

																		(5)

ܵ = ܵ + ଵܯ ଵܵ(ߣ) + (ߣ)ଶܵଶܯ   (6)	

Figure 3: Colour distribution of selected SOCS data.

Multiplication of reflectance and illumination data

Thirdly,  we  used  Equation  7  to  obtain  the  target  spectra  (O), the spectral radiance distribution,
which was acquired via multiplication of the SOCS data and daylight data defined above, in order to
form  spectral  radiances.  The  reproduction  of  reflectance  data  is  defined  in  the  same  way  as  in
Equation 1. Although the colour temperature range specified by the Equations 3 and 4 is 4000-25000
K, we chose the range of 4000–9,000 K sampled at 1000 K intervals as our source for preparing the
radiance data. The wavelength range was from 400 to 700 nm at 10-nm intervals. Although it would
be ideal to choose a small wavelength interval of 1-nm intervals, considering the calculation time and
minor errors that may ensue, we performed our calculation using 10-nm intervals.

ܱ = ( ଵܴܰଵ + ଶܴܰଶ + ଷܴܰଷ + തܴ) × (ܵ + ଵܯ ଵܵ (ଶܵଶܯ+ (7)

Design of six-primary spectra using the target spectra

The combination of multi-spectrum colour filter

To precisely reproduce the target spectra, we used software to simulate the spectral transmission
characteristics of the colour filters. Depending on the computational cost, Gaussian functions are
usually used to simulate the spectral transmission spectra in given illumination. In this case, we used
the normal distribution function (ܨ(ߣ)),  which  is  a  more  restricted  case  of  Gaussian  function  as
shown in Equation 8. ,refers to the random probability density in the wavelength range 400-700 nm ߣ
and ݅ = 1 − 6 labels the six bell curves. indicates the dominant wavelength position, and ߤ σ specifies
the half width at half maximum (HWHM) of the spectrum.

(ߣ)ܨ = ଵ
ఙ√ଶగ

exp	(− (ఒିఓ)మ

ଶఙ
మ ) (8)
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Therefore, to stress the spectral radiance distribution, assuming the light spectral distribution of
display backlight is a flat distribution of D65, the relationship can be expressed as Equation 9. Because
of the light source has a nearly uniform spectral distribution, each spectral radiance distribution of

ܲ(ߣ) will be an approximately smooth bell curve.

ܲ(ߣ) (ߣ)ܨ	= 	× (D65	flat	light	spectral	distribution)  (9)

For example, we simulate two filters with different spectral transmittance characteristics but at the
same wavelength, denoted as Fi1 and Fi2 in  Figure  4.  Assuming  the  display  backlight  is  D65,  the
wavelengths (μ) of these two spectral transmittances are set to the same value of 520 nm, and the
values of σi1 and σi2 are  set  to  20  and  50,  respectively.  For  the Pi1 filter, (L1*, a1*, b1*) = (62.28, -
135.89, 51.48) and the chroma is 145.32; for the Pi2 filter, (L2*, a2*, b2*) = (83.76, -71.03, 20.26) and
the chroma is 73.86. When two spectral transmittances are at the same wavelength, a smaller half-
width corresponds to a more vivid colour perception.

Figure 4: Band distributions of Fi1 and Fi2.

The values  of n1–n6 in  Equation  10  were  obtained  using  the  least-squares  method applied  to  the
spectral radiance distribution of the target sample (SRD). Each Pi term in Equation 10 (i = 1–6) is a
spectral radiance distribution as defined in Equation 9. The n1–n6 terms are the spectral intensity of
each distribution corresponding to the target spectrum. This adjustment was based on normalised
spectral data, although the actual digital counts to reproduce target spectrum was determined by the
calibration of the device.

ܦܴܵ = ݊ଵ ଵܲ + ݊ଶ ଶܲ + ݊ଷ ଷܲ + ݊ସ ସܲ + ݊ହ ହܲ + ݊ ܲ (10)

Estimation

In this study, we want to create a set of spectral radiance distributions that can be easily simulated
by a mechanical or mathematical model, the six-primary spectra are also composed of smooth spectra.
The relationship between six-primary spectra and target sample can be expressed as Equation 11.  In
the ideal case, the parameter O in Equation 7 is approximately equal to SRD in Equation 10.
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ܦܴܵ ≅ ܱ (11)

To  comply  with  the  colour  reproduction  method  of  a  realistic  display,  we  used  the  least-squares
method to reproduce the target spectral radiances, by minimising the difference between the
reproduced and real data.

In the following, we will describe how this technique was used to simulate the spectral distribution
in the nature world. To achieve the best reproduction of all spectra in nature world, we performed
several statistical and mathematical methods to find the combination of basic spectra that is optimal
for reproducing the entire range of spectra in nature.

The designed six-primary spectra

As mentioned in previous paragraphs, we employed an algorithm that took the normal distribution
function  to  simulate  six  smooth  bell-curve  spectra,  using  the  loop  instruction  of  Matlab  software  to
estimate the reproduction. Due to the large amount of the loop data,  we separated the analysis to 3
steps. We calculated the averaged RMSE and the CIEDE2000ΔE00 [31] values between the original
and reproduction data in all selected samples (the SOCS data of 3725 spectral reflectance samples
multiplied by six irradiance data sampled in the 4000-9000 nm range in 1000 nm intervals). Thus, a
total  of  22350  data  points  was  considered.  The CIEDE2000 criterion does not take the observer
metamerism  into  account.  That  is  because  our  sole  aim  here  is  to  determine  whether  the  radiance
distributions of the spectra are completely reproduced.

We started by fixing each band at a wavelength μ ranging from 400 to 700 nm with intervals of 50
nm, and the width of the spectrum σ is set at 30 nm.

In the first step, we varied the wavelength of each band by increasing it by 0-50 nm in intervals of
10 nm and obtain the minimum averaged RMSE. Due to the small impact from the 400- and 700-nm
bands on the reproduction, we decided to fix these two bands temporarily to reduce the computational
cost.

The  second  step  is  the  micro-adjustment  step.  To  find  more  accurate  positions  for  each  band
obtained from the first step, we varied both μ and σ in the range of ±10 nm. In this step, the bands at
400 and 700 nm are fixed as well.

Having  obtained  highly  precise  positions  for  the  bands,  in  the  final  step  we  only  adjusted  the
magenta bands. The magenta bands are composed of two bands, whose initial positions are at the
extremely short wavelength of around 400 nm and the longest wavelength of around 700 nm. As the
shapes of the magenta bands could easily affect the reproduction results, we were required to adjust
not only μ and σ, but also their height ratio H at the same time. In the moment, we varied both the μ
and σ values in the range of ±50 nm for each band, and the H ratio within the range of 0 to 1000 in
intervals of 50.

Results

From Figures 5(a)-5(c), the averaged RMSE values after the first, second, and third steps are
0.0164, 0.0143, and 0.0132, respectively. Therefore, each step further improves the reproduction. The
final average of CIEDE2000 is 0.08. From both the RMSE and CIEDE2000 results, the reproductions
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are very close. The CIE (u′, v′) chromaticity diagram is presented in Figure 5(d), showing that the area
surrounded by the primary colour of six bands is significantly larger than the SOCS boundary except
for  the  boundary  at  green  region,  demonstrating  a  high  capacity  to  reproduce  the  colour  of  natural
objects. We tried to make the spectra of green or cyan colours narrower to expand the boundary of the
primary colour of six bands, but the result of averaged RMSE values against the sampled SOCS data
increased. Thus, we did not further pursue this spectra combination.

 Figure 6 compares the averaged RMSE values obtained in three steps (for a clear presentation, the
RMSE values have been multiplied by 100). The error bars indicate the 95% confidence interval of the
entire dataset. Also noted that with smaller error bars, the data are more concentrated, being closer to
the 95% confidence interval.

  We also presented the best and worst fits with their individual primary spectrum distributions in
Figure 7, with the averaged RMSE values of 0.004368 and 0.04291, respectively. The final (μ, σ) best
values for the six bands are (410, 16), (447, 24), (491, 28), (550, 30), (622, 34), (692, 32), and (716, 8);
and the H ratio of the magenta bands is 11:15.

Figure 5: Results of the (a) first, (b) second and (c) third steps; and (d) six-primary and SOCS boundaries on
CIE (u′, v′) chromaticity diagram.

(μ, σ) = (400, 30), (450, 30), (490, 30),
(550, 30), (620, 30), (690, 30), (700, 30)

Averaged RMSE = 0.0143

(μ, σ) = (400, 30), (447, 24), (491, 28),
(550, 30), (622, 34), (692, 32), (700, 30)

(μ, σ) = (410, 16), (447, 24), (491, 28),
(550, 30), (622, 34), (692, 32), (716, 8)

Averaged RMSE = 0.0164(a) (b)

(d)Averaged RMSE =0.0132(c)
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Figure 6: Comparison of averaged RMSE values for the first, second and third steps.

Figure 7: (a) Best fit of the original spectra with six primary spectra; (b) best fit distributions of the six-primary
spectra; (c) worst fit with the original and six-primary spectra and (d) worst fit distributions of the six-primary

spectra.

Discussion

We now compare our method with other reported six-primary band methods. Ajito et al. [2] used
two  real  projectors  to  construct  the  six-primary  spectra  in  order  to  obtain  a  wide  colour  gamut.
Therefore, their purpose is different from our current study which is obtaining the best reproduction
of natural spectra. Nevertheless, this method is used for comparison to ours, because (1) there are very
few published studies on six-primary colour spectra and (2) the paper is frequently cited in Long and
Fairchild [3]. As Ajito et al. [2] did not report any spectral distribution data, we used transparent grid

d
(c) (d)

(a) (b)
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paper to establish the coordinates,  and took data at 10-nm intervals within the wavelength range of
400-700 nm to reconstruct the band distribution shown in Figure 8a. The study by Long and Fairchild
[3] had a similar aim to the present study, and undoubtedly produced better averaged RMSE results
than ours.  The spectra were constructed using the Gaussian distribution, but with no merged bands
for the magenta colour shown in Figure 8b. In order to check the reproductivities of the three methods
from Ajito et al.  [2],  Long  and  Fairchild  [3],  and  our  proposed  method,  we  compared  these
reproduction results obtained for the SOCS samples and the Macbeth ColorChecker. The display
backlight was assumed as a D65 flat light spectral distribution.

Figure 8: Distribution of six-primary spectra from (a) Ajito et al. [2] and (b) Long and Fairchild [3].

Using our selected 3725 samples from the SOCS data, the averaged RMSE value is smaller for our
proposed  method  than  the  other  two  methods  shown  in  Figure  9.  The  averaged  RMSE  values  in
selected  SOCS  data  for  methods  proposed  by  Ajito et al.  [2],  Long  and  Fairchild  [3],  and  ours  are
0.0636,  0.0204,  and 0.0131,  respectively.  We applied  the  one-way  ANOVA (analysis  of  variance)  to
these three methods and obtained F (2,67047) = 24316.04, p <0.01, showing that there are significant
differences among three methods. Figure 10 shows box plots where a smaller box indicates a higher
stability of the values. The open circles outside each box plot indicate the outliers. Outliers are
abnormal observations from a sample dataset or population, in the sense that they are greater or less
than the applicable upper or lower limits. These limits are typically 1.5 times the box plot length and it
could be seen that our proposed method results in the fewest outliers.

Figure 9 (left): Averaged RMSE results for SOCS samples.
Figure 10 (right): Box plot for SOCS results.

(a) (b)

**

**<0.01

** **
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For  Macbeth  ColorChecker,  totally  24  colours  were  used  as  we  are  aiming  to  improve  the
reproduction in general situations, we only compared the results for D65 daylight. The corresponding
box plot is shown in Figure 11. The results of our proposed method showed significant difference from
those of Ajito et al. [2], but only small differences from those of Long and Fairchild [3]. The averaged
RMSE values in Macbeth ColorChecker in D65 daylight for methods proposed by Ajito et al. [2], Long
and Fairchild [3], and us are 0.0625, 0.0202, and 0.0202, respectively. The differences among these
three values are caused by two factors: the insufficiency sample quantities and the lack of accuracy in
some sampling data. For the first factor, we changed the sample data from the original D65 to the
4000-9000 K range with intervals of 20 K for the daylight situation, and the corresponding box plot is
shown in Figure 12.

Figure 11 (left): Box plot for Macbeth ColorChecker results in D65 daylight.
Figure 12 (right): Box plot for Macbeth ColorChecker results in 4000-9000 K daylight.

Using  one-way  ANOVA,  we  found significant  differences  among the  three  models  (F  (2,18069)  =
7369.69, p <0.01), with the averaged RMSE values for the methods proposed by Ajito et al. [2], Long
and  Fairchild  [3],  and  us  being  0.0785,  0.0243,  and  0.0228,  respectively.  To  address  the  second
factor, the lack of accuracy in some sampling data, the reproduction results from the three models are
shown  in  Figures  13(a)-13(c).  Four  categories  defined  by  Macbeth  ColorChecker  are  considered.
Categories  1-4  (Nos.  1-6,  7-12,  13-18,  and 19-24)  are  called  the  natural,  miscellaneous,  primary  and
secondary,  and  grayscale  colours,  respectively.  Apparently,  our  method  did  not  reproduce  the
spectrum well in Categories 2 and 3, as shown in Figures 13(b) and 13(c), respectively.

Apart from the two methods discussed above, there is another numerical optimisation method,
called the non-negative matrix factorization (NMF). NMF provides the best non-negative results in
the search for an optimal solution [32-34]. It assumed that there exists a non-negative matrix V that
can  be  approximated  by  the  product  of  two  factors  W  and  H,  whose  relationship  is  expressed  in
Equation 12.

ܪܹ~ܸ                        (12)

V and WH followed two mathematical relationships with update rules that are usually called the
“multiplicative update rules.” Equations 13 and 14 illustrate the relationship between the Euclidean
distance of V and WH that can be used to reduce the data difference gradients.
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ܹ ← ܹ
(ு)ೌ

(ுௐு)ೌ
(13)

௨ܪ ← ௨ܪ
(ௐ)ೌೠ

(ௐௐு)ೌೠ
	 (14)

The Euclidean distance of ∥ ܸ 	ܪܹ− ∥  follows the update rules, where W and H are composed of
a × u, and i × a terms of the matrix, respectively. Once W and H reach fixed points, the Euclidean
distance is also invariant under the update rules. The divergence of ∥)ܦ ܸ ∥ ܪܹ ∥)  follows the update
rules, where W and H are composed of a × u, and i × a terms of the matrix, respectively as expressed
by Equations 15 and 16.

௨ܪ ← ௨ܪ
∑ ௐೌೌ/(ௐு)ೠ

∑ ௐೌೖ
(15)

ܹ௨ ← ܹ௨
∑ ௐೌ ೠೠ/(ௐு)ೠ

∑ ௐೌ ೡೡ
(16)

We set a = 6 for six-primary colours and used 1, 5, 10, 20, 40, 80, 200, and 500 iterations to see the
differences.  Figure  14  shows  the  obtained  averaged  RMSE  results  for  the  sampled  SOCS  data  after
different numbers of iterations.  The smallest averaged RMSE value is obtained when the number of
iterations is close to 200. We also compared the results for six-primary bands in the 1st (thick lines)
and 200th (dotted lines) iterations and found very little change in the band distribution as shown in
Figure  15.  The  colours  of  the  bands  correspond  to  their  wavelength  peak  colours,  which  are  Blue,
Cyan,  Green,  Yellow,  Red,  and  Magenta.  We  chose  to  use  the  results  obtained  after  200  iterations
which have the smallest averaged RMSE value as the six-primary band obtained by the NMF method.
We also compared the colour gamut of our proposed method and the NMF method on the CIE (u′, v′)
chromaticity  diagram.  The  gamut  of  NMF  method  in  Figure  16(a)  is  small,  the  maximal  range  of
covering area is a little bit larger than the sampled SOCS data. Thus, we speculated that this method
may  only  produce  results  for  specifically  chosen  samples,  while  the  gamut  range  is  likely  to  be
different  for  different  samples.  From  the  result,  we  think  the  NMF  method  is  a  variable,  high
uncertainty method, and it  is  difficult  to provide a general combination of spectra for multi-primary
display. The gamut range obtained using our proposed method is larger than the SOCS data. Figure
16(b)  shows  the  performance  of  each  spectrum  in  the  three-dimensional  CIE  (u′, v′) chromaticity
diagram. The Z axis represents the relative luminance (Y) normalised to 0–100. It could be seen that
our  maximum  relative  luminance  is  similar  to  that  of  the  NMF  method,  which  is  around  60.
Moreover,  the  maximum luminance  of  Long  and Fairchild  [3]  is  higher  than that  of  Ajito et al. [2].
Consequently, we posited that our proposed method can provide a general combination of spectra that
is  broadly  applicable  in  any  scenario.  In  the  future,  new  light  sources  are  likely  to  be  developed,
including lasers with wider colour gamut than those currently available. Complete reproduction of
these spectra will be a new topic of investigation. Nevertheless, we believe that the method of accurate
spectral reproduction proposed here, with its larger gamut, could handle this issue easily.
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Figure 13: (a) Reproduction for Macbeth ColorChecker Nos. 1-8. Letters A, D, and P denote the results from
Ajito et al. [2], Long and Fairchild [3], and the proposed method; the upper and lower columns under each plot

show the RMSE and CIEDE2000 results, respectively.

A_ RMSE = 2.88

D_ RMSE = 0.86

P_ RMSE = 0.50

A_ RMSE = 7.02

D_ RMSE = 2.37

P_ RMSE = 1.59

A_ RMSE = 7.16

D_ RMSE = 1.76

P_ RMSE = 1.25

A_ RMSE = 2.82

D_ RMSE = 1.64

P_ RMSE = 1.53

A _dE00 = 0.08

D_dE00 = 0.04

P_dE00 = 0.04

A _dE00 = 0.21

D_dE00 = 0.12

P_dE00 = 0.03

A _dE00 = 0.08

D_dE00 = 0.11

P_dE00 = 0.01

A _dE00 = 0.21

D_dE00 = 0.05

P_dE00 = 0.05

A_ RMSE = 10.4

D_ RMSE = 2.47

P_ RMSE = 1.80

A_ RMSE = 10.3

D_ RMSE = 2.75

P_ RMSE = 1.63

A_ RMSE = 5.68

D_ RMSE = 1.83

P_ RMSE = 3.07

A_ RMSE = 5.95

D_ RMSE = 2.09

P_ RMSE = 1.78

A _dE00 = 0.36

D_dE00 = 0.08

P_dE00 = 0.06

A _dE00 = 0.48

D_dE00 = 0.28

P_dE00 = 0.11

A _dE00 = 0.32

D_dE00 = 0.09

P_dE00 = 0.36

A _dE00 = 0.07

D_dE00 = 0.05

P_dE00 = 0.01

2 3 4

5 6 7 8

1



Journal of the International Colour Association (2018): 21, 52-73 Chang, Mizokami & Yaguchi

66 http://www.aic-colour.org/journal.htm | http://www.aic-color.org/journal.htm ISSN 2227-1309

Figure 13: (b) Reproduction for Macbeth ColorChecker Nos. 9-16.
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Figure 13: (c) Reproduction for Macbeth ColorChecker Nos. 17-24.
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Figure 14: Relation between number of iterations and averaged RMSE in the NMF method.
Figure 15: Six-primary result for 1 and 200 iterations in the NMF method.

Figure 16: Comparison of SOCS data and results from different methods in CIE (u′, v′) chromaticity
coordinates: (a) 2-D, (b) 3-D. The red solid, blue solid, cyan solid, green solid and black dotted lines represent
the SOCS data, the results from NMF, Ajito et al. [2], Long and Fairchild [3], and the proposed methods; with

the areas being 0.07,0.10, 0.15, 0.08, and 0.14, respectively.

Finally,  we  sought  to  evaluate  the  reproducibility  of  these  four  methods  for  natural  spectra.  We
therefore separated data in the SOCS database into nine categories: Faces, Flowers, Leaves, Paints,
Pigments, Photos, Printers, Textiles, and Graphics. With the exception of Flowers, Leaves, Paints, and
Pigments which have the smaller amounts of raw data, each category has much more times of data
than the sampled SOCS data used in the investigations described above. Here, we used a total of 10751
SOCS samples. All obtained database spectral radiance distributions are products of reflectance and
spectral distribution of illumination with the same colour temperatures as for the sampled SOCS data
(4000-9000  K,  with  intervals  of  1000  K  between  400-700  nm).  Each  reproduction  of  the  spectral
radiance distribution of the natural object colour is determined by the least-squares method, and then
its averaged RMSE value is calculated.

Table 3 listed the number of sampled data points and the averaged RMSE values for each category.
All  methods  were  based  on  six  primary  spectra.  The  last  column  shows  the  average  of  the  four
methods. The Photos category has the worst reproducibility,  with an RMSE of 4.56 on average, and
the Leaves category has the best reproducibility (1.50). Averaged RMSE values for the NMF method
are generally better than the other methods, with the exception of Photos category. However, our

(a) (b)
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proposed method also shows good reproducibility in all categories. The method of Ajito et al. [2] has
the worst averaged RMSE, which we believe may be related to the early time of the study (circa 1998)
and the lack of multi-primary environment. We also believe that the projectors used by Ajito et al. [2]
were  calibrated  by  the  manufacturer  for  optimal  spectral  properties,  thus  it  is  difficult  for  our
proposed method to completely realise the ideal spectrum. However, we could use a commercial
available spectral tunable lighting apparatus that can operate in the multi-band to reproduce the
colours.  After  fixing  the  six  channels  only,  the  normal  distribution  bands  from these  methods  were
passed  through  this  device  to  see  if  they  could  be  completely  reproduced  in  reality.  Although  the
averaged  RMSE  values  obtained  by  our  proposed  method  and  that  of  Long  and  Fairchild  [3]  are
comparable,  the  errors  obtained  by  our  method are  consistently  smaller  except  for  the  Printers  and
Graphics  categories.  The  method  of  Long  and  Fairchild  [3]  shows  the  best  performance  among  all
methods in the Graphics category. This might be due to the spectra of the Macbeth ColorChecker were
used in the development of that method.

Methods

Categories
Faces
(496)

Flowers
(148)

Leaves
(92)

Paints
(336)

Pigments
(229)

Photos
(576)

Printers
(3512)

Textiles
(2578)

Graphics
(2784)

Ajito et al. [2] 6.24 8.06 2.31 8.37 5.46 9.57 4.97 8.62 5.13
Long and
Fairchild [3]

2.10 3.09 1.61 2.29 2.21 3.37 2.15 3.19 1.64

NMF 1.33 2.34 1.00 1.72 1.92 3.04 2.09 2.28 1.94
Proposed 1.63 2.53 1.11 1.94 2.53 2.26 2.36 2.46 2.16
Average 2.82 4.00 1.50 3.77 3.03 4.56 2.89 4.13 2.71
Units: averaged RMSE × 100

Table 3: The averaged RMSE values in each category for the four methods.

Figure 17: The averaged RMSE values with their error bars in each category for the four methods.

On the other hand, the smoothness of the spectra can be seen as the continuity of a set of data, and
it could be assessed using the error bar of the reproduced spectra. Figure 17 shows the average RMSE
values  with  their  error  bars  by  category.  The  data  for  Ajito et al. [2] had the worst smoothness
compared to the other three sets. Our proposed method had the best smoothness, especially in Faces,
Paints, Photos and Textiles categories. In Flowers category, our proposed method is comparable to
that  of  Long  and  Fairchild  [3]  and  better  than  the  other  two.  In  addition,  the  method  of  Long  and
Fairchild  [3]  is  superior  to  the  other  three  methods  in  Printers  and  Graphics  categories.  As  for  the
NMF  method,  it  performed  better  than  the  other  three  only  in  the  Leaves  category,  showing  great
instability.
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In addition, we also wanted to find out how well  the three methods (NMF and those proposed by
Ajito et al. [2] and Long and Fairchild [3]) reproduce data under other light sources in comparison to
our method. We prepared three light sources: the CIE standard illuminant F1 (6450K fluorescent
lamp), the Toshiba E-Core Par30s (6500K LED bulb), and Philips 50Par30L (2750K tungsten halogen
lamp). The spectral distributions of three light sources are represented in Figures 18(a)-18(c). The
radiant powers were normalised to 0–1, and the wavelength range was from 400 to 700 nm at 10 nm
intervals. The averaged RMSE for three light sources are shown in Tables 4-6. It could be seen that the
RMSE values  of  our  proposed  method are  only  slightly  more  than 3  among three  light  sources  that
showed stable reproducibility. The method of Ajito et al. [2] has the best reproducibility for the LED
bulb, and we think it might related to the properties of their chosen projectors’ primary colours. The
method of Long and Fairchild [3] performed perfectly for the fluorescent lamp. Its performance is also
similar to our proposed method for the tungsten halogen lamp, but the reproducibility was lower for
the LED bulb.

Figure 18: Spectral distributions of three light sources: (a) CIE standard illuminant F1, (b) Toshiba E-Core

Par30s, (c) Philips 50Par30L.

Methods

Categories
Faces
(496)

Flowers
(148)

Leaves
(92)

Paints
(336)

Pigments
(229)

Photos
(576)

Printers
(3512)

Textiles
(2578)

Graphics
(2784)

Ajito et al. [2] 2.13 1.96 0.81 2.84 1.77 2.07 1.25 0.90 1.48
Long and
Fairchild [3]

0.96 1.05 1.34 1.34 0.90 0.99 0.78 0.46 0.79

NMF 1.05 1.22 1.06 1.85 1.20 1.21 0.90 0.56 0.93
Proposed 1.65 1.53 0.78 2.16 1.45 1.44 0.92 0.65 1.03
Average 1.44 1.44 0.99 2.04 1.33 1.42 0.96 0.64 1.05
Units: averaged RMSE × 100

Table 4: The averaged RMSE values of F1 fluorescent lamp in each category for the four methods.

Methods

Categories
Faces
(496)

Flowers
(148)

Leaves
(92)

Paints
(336)

Pigments
(229)

Photos
(576)

Printers
(3512)

Textiles
(2578)

Graphics
(2784)

Ajito et al. [2] 2.55 2.61 0.81 3.61 2.09 2.50 1.75 2.62 2.16
Long and
Fairchild [3]

3.70 3.62 1.34 5.54 2.46 4.05 2.67 3.98 3.36

NMF 3.20 3.23 1.06 4.79 2.29 3.47 2.47 3.47 3.03
Proposed 2.45 2.54 0.78 3.67 2.06 2.66 1.95 2.73 2.33
Average 2.97 3.00 0.99 4.40 2.22 3.17 2.21 3.20 2.72
Units: averaged RMSE × 100

Table 5: The averaged RMSE values of LED bulb in each category for the four methods.

(a) (b) (c)
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Methods

Categories
Faces
(496)

Flowers
(148)

Leaves
(92)

Paints
(336)

Pigments
(229)

Photos
(576)

Printers
(3512)

Textiles
(2578)

Graphics
(2784)

Ajito et al. [2] 5.37 8.54 2.09 5.24 4.81 8.32 4.02 7.3 3.23
Long and
Fairchild [3]

1.12 2.87 1.47 1.01 1.5 2.72 1.79 2.8 0.6

NMF 1.36 2.3 1.05 1.25 1.61 1.65 1.54 1.63 1.14
Proposed 0.99 2.61 1.4 1.3 1.98 1.85 2.02 2.42 1.3
Average 2.21 4.08 1.50 2.2 2.47 3.63 2.34 3.53 1.56
Units: averaged RMSE × 100

Table 6: The averaged RMSE values of tungsten halogen lamp in each category for the four methods.

The NMF method is fast, highly accurate, and provides an optimal combination of bands for given
samples. However, the obtained band distributions are irregular for the blue and red bands in Figure
15. The same trends could be seen for the other light sources: some light sources performed well while
some did not, showing the method’s instability. If we used programmable output light source devices
to  modify  the  corresponding  optimal  combination  of  bands,  the  bands  could  not  be  simulated  by
mathematical formula exactly. In comparison, our proposed method could provide an optimal
combination of bands for these devices and reproduce the spectra of natural colours better than the
other methods.

Conclusions

In this study, we first  used the PCA method to reproduce a large spectral  reflectance dataset,  and
found that the data were represented well by three principal components. Second, using the least-
squares method, we fitted six primaries with a normal distribution to the spectral radiance data that
consisted the combination of reflectance and illumination data. The averaged RMSE values and colour
differences of the reproduction were 0.0132 and 0.08, respectively which represented good results.

Compared to the bands reproduced using the methods of Ajito et al. [2] and Long and Fairchild [3],
our proposed method produced good results with lower averaged RMSE values,  and with significant
differences  from  other  methods  showed  by  using  ANOVA  analysis.  The  proposed  method  could
reproduce better spectra of natural objects. The quality of colorimetric reproduction usually depends
on their different colour values between the original and reproduction. Although lower averaged
RMSE  values  do  not  directly  correspond  to  good  colorimetric  reproduction,  the  averaged  colour
differences  obtained  using  our  proposed  method are  smaller  than those  from using  other  methods.
Hence, the differences in colour appearance owing to metamerism will be eliminated, yielding good
colour reproduction.

While  the  NMF  method  provides  the  optimal  combination  of  bands,  its  results  are  irregular
compared to those from the other methods. We believe that if rough band distributions are obtained,
it  is  difficult  to  reproduce  the  same  bands.  The  method  of  Long  and  Fairchild’s  [3]  and  ours  can
precisely provide the numerical parameters of the Gaussian function and normal distribution
function, respectively.  These methods could quickly reproduce the spectra by using devices that can
adjust the spectral radiance distribution by numerical algorithm.

Although the  results  from Ajito et al.  [2]  occupy  the  largest  gamut  area  in  the  in  the  CIE (u′, v′)
chromatic  diagram,  the  reproduction  is  the  least  accurate  among  the  four  methods.  Our  proposed
method has an appropriately sized area in the diagram, highly smooth spectral distribution, and good
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reproduction result. The relative luminance is also the highest. Band data obtained from this method
can reproduce well the spectral radiance distributions for the SOCS data.

Even  though  we  used  daylight  data  with  a  limited  number  of  colour  temperatures  as  samples,
excellent reproducibility was also obtained in the spectral reproduction of other light sources.

 We believe it can be used in technological applications including some mentioned in Introduction.
The method allows effective reproduction of original spectral targets and can be used to develop state-
of-the-art filters for novel types of displays that extend beyond the LCDs and LEDs.
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