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The Julesz’s conjectures were the foundations for the development of many methods for texture 
discrimination as spatial arrangements of local patterns. These local patterns represent a bridge 
between a first conjecture that handles a purely statistical approach and the texton theory. Beyond the 
mathematical construction of the Local Binary Patterns (LBP) proposed by Ojala, the proposed pattern 
defined by a circular neighbourhood can be considered as texton. Nevertheless, the binarisation step 
inside the Local Binary Pattern reduced the ability to be sensitive to the details of high spatial 
frequencies. In addition, the colour extension of Local Binary Pattern is not straightforward. In this 
article, we introduce the Colour Local Patterns (CLP) as a new vector texture feature able to 
characterise colour texture. The Colour Local Pattern inherits from the Local Binary Pattern construction 
and from the psycho-physical results, starting from the third Julesz’s conjecture. By defining the CLP in 
a perceptual colour space and by using a perceptual distance, we embed the notion of neighbourhood 
defined by Julesz and used in LBP. Then by applying a Fourier transform, we generate a signature 
vector for the local signature. The results achieved in classification tasks are higher around 10% in the 
rate of good classification in two databases with the largest number of images. 
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Introduction 

The human visual system (HVS) processes the visual information by extracting the salient regions 

from their local contrast in the perceived sense. In this process, the information of texture and colour 

takes an important place [1]. There are two functionally different visual information-processing 

systems. The first one, the pre-attentive system, processes the visual information at the pre-conscious 

level and without the help of cognitive process. The second one, the attentive system, involves search, 

research and cognitive processing. The pre-attentive system separates the regions of a figure with the 

background, acting thus as a guide for the attentive system which is responsible of object identification 

[2].  
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There are many theories to set the way in which the human visual system encodes the structure of an 

image in the pre-attentive system [3]. Julesz in the first conjecture proposed it, by means of differences 

statistics of first and second order that contribute at the discrimination [4]. Later he wide this 

conjecture: “whereas textures that differ in their first and second-order statistics can be discriminated 

from each other, those that differ in third-order or higher order usually cannot”. More complex 

relationship information are required to solve these limits [5].  

The second part of the Julesz’s work developed with Caelli established that the textures are easily 

discriminable by a number of geometric properties as local curvatures, endpoints and junctions called 

“perceptive quarks” [6]. After, Bergen and the same Julesz expanded this definition in the texton 

theory. This theory stated that discrimination is due to the first-order statistical differences between 

textons. Textons are generally reduced to segments of lines with specific length, orientation, width and 

gap, as well as terminations, crosses and blobs [7]. 

In parallel, the foundations of texture assessment by image processing tools started with Haralick, 

who translated the Julesz’s purposes into the co-occurrence construction [8]. Since these works, lot of 

methods were developed for intensity images, to express the texture information into digital features 

(histogram difference, co-occurrence, run-length matrix, Fourier transformations, local binary 

patterns,…).  

However, the extension to colour images is not straightforward. The first constructions followed the 

Poirson and Wandell’s hypothesis [9] proposing to separate the colour information from the texture 

[10-12]. Nevertheless, such hypothesis is too basic in front of the spatio-chromatic complexity of natural 

images. So Palm’s proposed to process the texture information on each colour channel (marginal 

construction) and to combine them into a single texture feature. To take into account the inter-channel 

dependency, Arvis added to the marginal construction the inter-channel texture information [12-13]. 

Recently, Martinez Ríos et al. showed that for natural images vector model of colour texture assessment 

are more accurate in texture discrimination. They argued that the right texture model for colour images 

depends on the inner spatio-chromatic complexity of the image [14]. Consequently, they extended the 

basic approaches separating the colour and the texture to the vector models including naturally the two 

aspects [15]. 

Our work proposes to show how to adapt the Local Binary Pattern in the context of colour images 

respecting the texton model from Julesz and using perceptual colour distances. We will show how to 

avoid the limitations of LBP due to the binarisation step and how to preserve the LBP advantages in 

texture characterisation/discrimination due to the word histograms. This paper is organised as follow: 

in the following section, the mathematical definition of Local Binary Pattern is recalled. Then, we 

develop the Colour Local Pattern (CLP) construction and the associated feature. In the section Results 

and Discussion, we analysethe CLP behaviour in front of 4 sets of images coming from the most used 

databases in colour texture classification contests. Finally we compare the performance in texture 

classification of CLP in front of the colour extension of LBP. Then endings and next trends are developed 

as conclusions.  

Local binary pattern 

Local Binary Pattern (LBP) was proposed by Ojala et al. for texture recognition and classification of 

grey-level images [16]. Later several authors adapted it for colour texture assessments [17]. The original 

algorithm presents a low computational complexity and a low sensitivity to changes in illumination [18].  
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Due to the initial construction, LBP can be considered as a bridge between statistical models and 

structural models of texture analysis [19]. Therefore, Huang defines LBP as the quantification of the 

statistical occurrences of individual patterns invariant to rotation corresponding to certain micro-

textures on the image; consequently, patterns can be considered as a feature detector [20]. LBP 

approaches have been proposed originally for texture classification but are applied also for face image 

analysis, image and video retrieval, environment modelling, visual inspection and biomedical image 

analysis [20-21].  

The initial mathematic definition of LBP is divided in two parts, first one extracts the local binary 

patterns from an intensity image and the second one processes a pattern histogram for texture 

discrimination purposes [21]. In the following, we recall these two steps. 

 

Definition of local binary pattern 

The local pattern TP,d(x) is defined at the x location by the sequence of the local differences between 

I(x) and the neighboured values I(p). The neighbourhood is defined for a spatial localisation x, 

considering a set of P neighboured pixels at a distance d from x: 

 ܶ,ௗሺݔሻ ൌ ሼሺܫሺሻ െ ,ሻሻݔሺܫ ∀ ∈ ሾ0, ܲ െ 1ሿሽ	 (1)	

	 	݁ݎ݄݁ݓ ൌ ݔ  ݀݁
మഏ
ು 	

Local binary pattern histogram 

Ojala works with histograms of words Hwd for texture characterisation. The considered words Wid(x) 

are obtained by the sequence of the binarised differences from the local pattern. The final result is an 

integer due to the binary word transformation into an unsigned value. Equation 2 shows the word 

construction using a weighting in power of two of the local difference and the final summation. 

 ܹ
ௗሺݔሻ ൌ ∑ ܵ݅݃݊ሺܫሺሻ െ ሻሻ2ିଵݔሺܫ

ୀ 	 (2)	

	 ܽ݊݀	ܵሺܿሻ ൌ ቄ
1, ∀ܿ  0
0, ∀ܿ ൏ 0	

Finally, the texture signature is defined by the histograms of words Wid(x): 

 ܵ݅݃ሺܫሻ ൌ ሻܫ௪ௗሺܪ ൌ ൛ܾݎ൫ ܹ
ௗ ൌ ܽ൯, ∀ܽ ∈ ሾ0, 2 െ 1ሿൟ	 (3)	

From the colour extension 

The colour extension of LBP into the colour domain is classically developed following two different 

ways. The first one splits the colour texture into a texture information processed from an intensity image 

and combined with colour statistics (Grey-Level Approaches with Colour Information: GLACI). The 

second one processes the colour texture thanks to grey-level texture features applied on each colour 

channel (C1, C2, C3) in a separated processing (marginal approach). Arvis proposed to improve this 

approach adding the texture assessment between channel (Ci  Cj with i ≠ j). This approach is known 

as Cross-Channel Marginal Approach (CCMA). In this last case, the corresponding distributions are 

thus represented in nine different histograms: three intra-component features: C1-C1, C2-C2, and C3-

C3 and six inter-component features: C1-C2, C2-C1, C1-C3, C3-C1, C2-C3 and C3-C2.  
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Consequently a colour texture is characterised using LBP by 9 histograms of 256 words [10]. 

Porebsky proposed a method of feature selection to reduce the size of the resulting vector and to 

improve the good classification rates [17].  

 

The CLP mathematic definition 

To be close from the Julesz’s conjecture and to the models of human perception, the Colour Local 

Pattern (CLP) must be defined using perceptual distance. So the circular neighbourhood sequence must 

be defined by the vector colour difference ݏԦሺ݇ሻ calculated in a colour space like CIE L*a*b*.The circular 

neighbourhood is sampled by a factor P to manage the discrete angular θ: 

Ԧሺ݇ሻݏ  ൌ ሻሺܫ െ ,ሻݔሺܫ ∀ ⊂ ሾ0, ܲ െ 1ሿ	 (4)	

		݄ݐ݅ݓ ൌ ݔ  ݀. ݁
ଶగ
 ⇒ ߠ ൌ ݇

ߨ2
ܲ
	

In the Equation 4, IL(x) is the transformed coordinate of I(x) in the adapted colour space (CIE L*a*b* 

or another colour space where a perceptual colour distance is enabled). To define an efficient feature 

from the ݏԦሺ݇ሻ sequence, the Fourier transform SP,d(θ) of the sequence ݏԦሺ݇ሻ is processed. To stay close 

from known LBP standard, the vector construction of this difference was built in two parts, first one 

considers the norm of this difference using a perceptual distance in an adapted colour space. The second 

one considers the orientation of this difference in this adapted colour space. Consequently, the Fourier 

analysis of the difference pattern was developed on three scalar values expressing the vector nature of 

the sequence	ݏԦሺ݇ሻ: a norm and two angles (to see Equation 5). 

	 Ԧሺ݇ሻݏ ൌ ൝
|Ԧሺ݇ሻݏ| ൌ ,ሻሺܫ൫ܧ∆ ሻ൯ݔሺܮ

Ԧሺ݇ሻݏ∟ ൌ ∟ቀܱܽሬሬሬሬሬԦ, ሺ݇ሻሬሬሬሬሬሬሬሬԦቁݏ ൌ ൫ߙሺ݇ሻ, ሺ݇ሻ൯ߚ
∀				 ∈ ሾ0, ܲ െ 1ሿ	ܽ݊݀	ܫሺݔሻ 	∈ CIE	L*a*b*		 (5)	

Colour local pattern feature 

The main interest of the Ojala’s construction for LBP was to transform the distance between texture 

signatures into a distance between histogram of words. In a similar manner, the distance between CLP 

features will be based on distance between distributions coming from the Fourier transform of the norm 

and angle of ݏԦሺ݇ሻ.  

In a first consideration, we limit the CLP feature to the norm of the Fourier transform of ݏԦሺ݇ሻ 

(equation 6). Keeping the square of the norm, the feature is correlated to a power measure, thanks to 

that the first feature value (V=0) expresses the average colour distance between the pixel location x and 

the pixels values on the neighbourhood. 

In addition, as s(k) is a real function, we can store half part of the spectrum. 

	 ሻܫ௱ሺ݃݅ݏ ൌ ቄሺܵ,ௗ
ூ ሺܸሻሻଶ, ∀ܸ ∈ ሾ0, ܲ/2ሿቅ	 ሺ6ሻ	

Results and Discussion 

Dataset and graphics results 

This sub-section presents some texture signatures for images from OUTEX, VISTEX, STEX and 

ALOT databases. The texture signatures are the average CLP features.  
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The physical and perceptual constraints in Julesz conjecture on spatial distances require to work with 

Euclidean distances to produce an anisotropic analysis. So to preserve the circularity constraint induces 

by the Euclidean distance and taking into account the requirement of a small distance, we selected a 

radius of 3 pixels, approximating the circle by an octagon of 16 pixels (d=3 and P=16 in Equation 4). 

Such a choice allows also to be in concordance with the FFT requirements.  

 

CLP features for some OUTEX images 

 

 

 

Figure 1: Some images of colour texture from OUTEX test; left to right – Canvas 2, Canvas 4, Canvas 20 and 
Wool 4 (there are totally 68 images captured under the same illumination conditions). 

 

OUTEX test is the "TC 00013" with 68 colour texture images of 746×538 pixels of 24 bits. Following 

Arvis for the classification process, images are split up into 20 disjoint sub-images of 128×128 pixels 

producing 20 sub-images. Each initial image is associated to one class, the complete image set generates 

1360 sub-images, 50% for to learn and the rest for classification. The Figure 1 shows some images of 

this database and the Figure 2 the associated CLP signature.  

The magnitude of the signature for the null frequency is relative to the average distance in the local 

neighbourhood. More important is this value, more homogeneous is the texture content (Canvas 2). 

Without logarithmic weighting, the magnitude variations far from the null frequency is reduced, 

nevertheless differences appears at these high frequencies between textures (Canvas 20 vs Wool 4 

typically).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Colour local pattern amplitude from OUTEX test – Canvas 2 (top left), Canvas 4 (top right), Canvas 
20 (bottom left) and Wool 4 (bottom right). 
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CLP features for some VISTEX images 

VISTEX test is based on the image set labelled "Contrib TC 0006", with 54 colour texture images, 

whose initial size are 512×512 pixels. As for the OUTEX case, the images are split into 16 disjoint sub-

images of size 128×128 pixels (Figure 3). Thus 432 images are used to build the learning subset and the 

432 remaining are used to build the classification feature vector.  

Unlike the OUTEX database, the signature variations between textures are more important reflecting 

the variety in colour and texture aspect of the representative images (Figure 4). In particular, the CLP 

magnitude of image fabric is the most important of the four VISTEX cases. By opposition, the curve 

corresponding to the figure bark presents the lowest amplitude and minor variations outside the null 

frequency. In this last case the radius used to define the spatial neighbourhood is too small (d=3) in 

front of the size of the image.  

 

 

 

 

Figure 3: Some images of colour texture from VISTEX test; left to right – Food, Flower, Bark and Fabric (there 
are totally 54 images captured under different illumination conditions, they are very different in contents and 

viewing conditions). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Colour local pattern amplitude from VISTEX test – Food (top left), Flower (top right), Bark (bottom 

left) and Fabric (bottom right). 

 

CLP features for some STEX images 

STEX database is based on the image set labelled "Salzburg texture image database". It includes 476 

colour texture images, whose initial size are 512×512 pixels; the authors didn't describe the acquisition 

conditions. The image content induces uncontrolled viewing and illumination conditions.  



Journal of the International Colour Association (2016): 16, 56-68 Richard, Martínez Ríos and Fernandez-Maloigne 

62 http://www.aic-colour.org/journal.htm | http://www.aic-color.org/journal.htm ISSN 2227-1309 

 

 

 

 

 

Figure 5: Some images of colour texture from STEX test; left to right – Bark 01, Bush 08, Tree 05 and Wood 30 
(there are totally 476 images captured under different illumination conditions, they are very different in 

contents and viewing conditions). 

 

Inside the STEX dataset, some texture images are stationary, while some others appear as a collection 

of objects (Figure 5). In Figure 6, the CLP curves corresponding to bush and wood images are very 

similar with reduced magnitude in the difference spectra. Such behaviour corresponds to textures that 

are quiet homogeneous around each spatial location in accordance to the select neighbourhood radius. 

In another hand, the bark and tree images include more complex textures, inducing a biggest average 

colour difference between the neighbourhood centre and his periphery. The texture complexity induces 

also the magnitude variations for the middle and high frequencies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Colour local pattern amplitude from STEX test – Bark 01 (top left), Bush 08 (top right), Tree 05 

(bottom left) and Wood 30 (bottom right). 

 

CLP features for some ALOT images 

ALOT is an impressive colour image collection of 250 distinct rough textures (some images are shown 

in the Figure 7), acquired by 4 different colour camera (c=1, 2, 3, 4). For each image and camera, six 

illuminations are considered (I=1, 2, 3, 4, 5, 8) and 4 rotations (r=0°, 60°, 120°, 180°) [23]. Three image 

sizes are proposed: full resolution (1536×1024) half resolution (768×536) and quarter resolution 

(384×256) pixels, all of them of 24 bits. Figure 8 shows that the average CLP curves for the three of the 

four images present a reduced energy, as for wood and bush cases in STEX images. The four texture 

signatures are clearly different. The most uniform ones in a perceptual point of view is the ribbed cotton 



Journal of the International Colour Association (2016): 16, 56-68 Richard, Martínez Ríos and Fernandez-Maloigne 

63 http://www.aic-colour.org/journal.htm | http://www.aic-color.org/journal.htm ISSN 2227-1309 

 

texture, as expected the average CLP curve presents the smallest variations at each frequency range. By 

opposition to the moss texture, for which the smallest variations (high spatial frequency range) are kept 

by the high frequencies in the average CLP curves.  

 

 

 

 

Figure 7: Some images of colour texture from ALOT test; left to right – Tea, Ribbed cotton, Moss and Cotton 
wool (there are totally 250 images captured under the same illumination conditions but with different viewing 

conditions). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Colour local pattern amplitude from ALOT test – Tea (top left), Ribbed cotton (top right), Moss 

(bottom left) and Cotton wool (bottom right). 

 

Inter-texture distance analysis 

Before to address the performance of the CLP feature in texture classification, we analyse the intra 

and inter-class distance (L2 form) in the CLP signature in order to assess their discrimination capacity. 

We consider each image I analysed previously as a class and the sub-images Is as the class samples. 

Each sub-image is associated to the average signature sigcpl(Is) and the class centre Ccl is defined by 

the average CLP signatures processed from the average signatures of the sub-images Is. Then the 

distance intra-class dic is:  

 

 ݀ ൌ
ଵ


∑ ݀ ቀ݃݅ݏ௱ሺݏܫሻ, ሻቁூ௦ܫሺܥ 	 (7)	

	 where	ܥ ൌ
ଵ


∑ ሻூ௦ݏܫ௱ሺ݃݅ݏ 	



Journal of the International Colour Association (2016): 16, 56-68 Richard, Martínez Ríos and Fernandez-Maloigne 

64 http://www.aic-colour.org/journal.htm | http://www.aic-color.org/journal.htm ISSN 2227-1309 

 

The inter-class distance dinc is the distance between two centres of class Ccl. 

	 ݀ ൌ ݀ ൬ܥሺܫሻ, 	ሻ൰ܫೕሺܥ (8)	

In Tables 1 to 4, the diagonal represents the intra-class distance, and the cells out of diagonal the 

inter-class distance. It is expected that the intra-class distance be lowest than the inter-class distances. 

According to this hypothesis, good performances in texture classification would be obtained.  

Table 1 shows the obtained distances for images from OUTEX database. Unfortunately some intra-

class distances are higher than the inter-class distances (case of Canvas 2 with Canvas 4 and Canvas 

20 with Wool 4). This behaviour is directly correlated to the non-stationarity of the analysed textures 

and to the similarity between the textile structure (Canvas 4 and Canvas 20 b.e.). 

 

 Canvas 2 Canvas 4 Canvas 20 Wool 4 

Canvas 2 7.26  10-6 3.90  10-6 11.04  10-6 7.28  10-6 

Canvas 4 --- 1.41  10-6 7.06  10-6 3.32  10-6 

Canvas 20 --- --- 6.74  10-6 3.78  10-6 

Wool 4 --- --- --- 4.18  10-6 

Table 1: Intra- and inter-class L2 distance for images of OUTEX database. 

 

In the VISTEX database, the four intra-class distances are lowest than the inter-class distances 

(Table 2). The shape differences between the average CLP signatures and the texture stationarity 

explain this result. 

 

 Food Flower Bark Fabric 

Food 10.65  10-6 12.90  10-6 27.04  10-6 14.60  10-6 

Flower --- 5.53  10-6 14.16  10-6 16.69  10-6 

Bark --- --- 0.50  10-6 30.80  10-6 

Fabric --- --- --- 7.07  10-6 

Table 2: Intra- and inter-class L2 distance for images of VISTEX database. 

 

The ration between the intra-class distances to the inter-class distances is important for the selected 

images of the STEX database (Table 3). We found one value very close in the distance between bush and 

wood class, than toward the centre of bush class. In Figure 6, the two average CLP signatures was very 

similar, and in Figure 5 we observed that the two texture images are relatively homogeneous inducing 

few intra-class variations explaining so the reduced intra-class distance. 

 

 Bark Bush Tree Wood 

Bark 2.43  10-5 29.37  10-5 11.90  10-5 29.74  10-5 

Bush --- 2.40  10-5 17.95  10-5 2.94  10-5 

Tree --- --- 6.70  10-5 18.71  10-5 

Wood --- --- --- 2.68  10-5 

Table 3: Intra- and inter-class L2 distance for images of STEX database. 
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Results for the selected images of ALOT database are presented in Table 4. The tea image cannot be 

easily differentiate from the ribbed and moss ones. Rather than no problems appear for the other cases. 

Such results is a direct consequence of the non-stationarity aspect of the tea texture image. The 

variations between two sub-images are more important than the variations between the CLP 

representing the class centres.  

 

 Tea Ribbed cotton Moss Cotton wool 

Tea 1.97  10-5 0.67  10-5 1.08  10-5 6.13  10-5 

Ribbed cotton --- 0.78  10-5 1.68  10-5 6.73  10-5 

Moss --- --- 0.88  10-5 5.07  10-5 

Cotton wool --- --- --- 0.49  10-5 

Table 4: Intra- and inter-class L2 distance for images of ALOT database. 

 

Performance in classification 

To compare the impact of the Colour Local Pattern (CLP) in front of other approaches of Local Binary 

Pattern (LBP) for colour images, we select the basic and complete classification scheme proposed by 

Arvis [12]. Then we compare CLP to grey-level based approaches for colour images. The first one 

combines a texture analysis adding its colour average (Grey-Level Approach with Colour Information: 

GLACI) and the second one extracts the relationship between the channels in a Cross-Channel Marginal 

Approach (CCMA) as proposed by Maempa [10]. Following this classification scheme, we develop our 

results on the two colour texture databases OUTEX (TC 00013, 68 textures), VISTEX (TC0006, 54 

textures) as defined by Arvis. However we add ALOT (250 textures, 6 illuminates and 4 cameras) and 

STEX (476 textures) databases that include more complex texture images.  

Table 5 shows that CLP obtains a higher rate of a good classification for 3 of the 4 evaluated databases 

(VISTEX, STEX and ALOT). A gain greater than 10% is obtained in the two databases having a more 

complex spatio-chromaticity (STEX and ALOT) [22].  

 

 LBP-GLACI LBP-CCMA CLP difference 

OUTEX 85.70 80.73 82.10 -3.60 

VISTEX 97.02 97.45 97.70 0.35 

STEX 60.34 71.24 83.90 12.70 

ALOT 58.30 70.64 81.30 11.30 

Table 5: Good classification rate for grey-level approach with colour information in Local Binary Pattern 
(GLACI-LBP), Local binary pattern with colour information in cross-channel marginal approaches (LBP-

CCMA) and colour local pattern (CLP). 

 

Differences in classification performances are due to the inner content of the used databases. As 

previously explained STEX and ALOT contain more images from natural textures rather than in the 

OUTEX case where the textures comes essentially from man-made structures and is known as including 

few coloured structures. As VISTEX and ALOT databases include images from the nature, the texture 

content is more complex. This complexity is relative to multi-scale structures inside the images and to 

the strong correlations between the colour channels. Such colour correlation between the channels is 

naturally induced by the continuous response of the acquired content in the spectral domain and the 
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non-null intersection between the spectral sensitivities of the sensor channels. For such spatio-

chromatic complexities, the colour local pattern approaches are well adapted, with an average gain of 

13% in comparison to the OUTEX case.  

The main differences in the CLP approach by opposition to the colour local binary approaches are in 

the colour consideration and in the detail preservation by removing the binarisation step. For the 

OUTEX database, the best performances are obtained with the GLACI approach (Grey-level approach 

using direct LBP on intensity image and adding some colour moment). In this case, the man-made 

content with basic textures including few variations in the colour content of each image and generally 

describe as monoscale textures justify the non-necessity of a more complex approach. In addition, more 

complex approaches will keep information at highest frequencies not discriminant for these texture 

(Gibbs phenomena). 

Finally, Figure 9 shows some images for which the CLP fails in the texture classification task. These 

cases are interesting because the texture content is as in the OUTEX case: content defined in one or two 

monoscale structures (Macaroni, Chips for ALOT case and Food) and with few colour local variations. 

 

 

 

 

Figure 9: Images from ALOT database that have problems in the classification percentage; left to right – 
Macaroni (coloured), Macaroni (penne), Chips (natural) and Shammy. 

 

 

 

 

Figure 10: Images from STEX database that have problems in the classification percentage; left to right – 
Flower 11, Food 01, Miscellaneous 01 and Miscellaneous 43. 

Conclusions 

Keeping the initial idea of the local binary pattern, we proposed a new expression adapted to colour 

domain. To obtain a feature coherent to the human vision and allowing to compare texture 

discrimination obtained by machine and human vision, we selected to base our construction on the 

colour differences processed in a perceptual colour space. The core of the feature is then the frequency 

representation of the colour difference sequences for a defined spatial neighbourhood.  

Obtained signatures of Colour Local Pattern (CLP) are easy to interpret and help us to identify change 

trends in the textured and coloured content. Static and homogeneous textures present an important 

magnitude for the null frequency. In addition, this null frequency is directly correlated to the average 

perceptual colour difference between a pixel in the image and a neighbourhood at a fixed distance. For 

more heterogeneous and complex texture, the energy is transferred into the highest frequencies in 

relation to the ratio between the distance parameter and the texture pattern size. 

Colour Local Pattern (CLP) approach is more interesting when the spatio-chromatic complexity of 

images increases. By opposition, basic approaches separating texture and colour are more adapted for 
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images of simple textures as in the OUTEX images. By opposition for textures coming from natural 

structures, as in the STEX and ALOT image cases, the gain in performance overpasses 10%.  

Under another point of view, the CLP expression proposes an efficient implementation of the texton 

notion proposed by Julesz. The texton notion is embedded without the requirement to a segmentation 

process and adapted to texture characterisation/discrimination. The notion is limited to a circular 

neighbourhood but embed a spatial and perceptual colour distances. Such possibilities induces the 

future developments in progress. Firstly a set of psycho-physical experiments to assess the feature 

performances in texture discrimination and to express a full and vector expression for the Colour Local 

Pattern (CLP). The objective is to define how to embed the angular variation of the vector difference 

around the circular neighbourhood in the signature construction according to the human perception of 

the colour variations. Secondly, taking benefit of the relationship between the inner spatio-chromatic 

complexity of an image and the necessity to use a vector way to characterise the texture content, we are 

developing a multiscale construction to assess the spatio-chromatic complexity of images. 
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