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Multispectral imaging: narrow or wide band filters?  
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In every aspect, spectral characteristics of filters play an important role in an image acquisition 
system. For a colorimetric system, traditionally, it is believed that narrow-band filters give rise to 
higher accuracy of colour reproduction, whereas wide-band filters, such as complementary colour 
filters, have the advantage of higher sensitivity. In the context of multispectral image capture, the 
objective is very often to retrieve an estimation of the spectral reflectance of the captured objects. The 
literature does not provide a satisfactory answer to which configuration yields the best results. It is 
therefore of interest to verify which type of filters performs the best in estimating the reflectance 
spectra for the purpose of multispectral image acquisition. A series of experiments were conducted on 
a simulated imaging system, with six types of filters of varying bandwidths paired with three linear 
reflectance estimation methods. The results show that filter bandwidth exerts direct influence on the 
accuracy of reflectance estimation. Extremely narrowband filters did not perform well in the 
experiment and the relation between bandwidth and reflectance estimation accuracy is not monotonic. 
Also it is indicated that the optimal number of filters depends on the spectral similarity metrics 
employed. 
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Introduction 

In practice, a multiband image acquisition system often employs an objective lens, a set of optical 

filters and an area image sensor with the aim of recording the projected image of a scene captured by 

the system. Each filter corresponds to one band of the resulting multiband image, and a subsequent 

estimation step is commonly required in order to retrieve the CIE tristimulus values or spectral 

reflectance of the scene.  
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Filter design is the very first component of such a system. Spectral characteristics of filters therefore 

make a direct impact on the overall performance of the system. When simplified as a normal 

(Gaussian) distribution, a filter can be described primarily by two factors, i.e., central wavelength and 

bandwidth. The former specifies the dominating wavelength where the transmittance of a filter 

achieves the maximum, and the latter determines how the filter respond to the incident light 

distributed among the remaining part of the spectrum. The bandwidth of a filter is commonly 

measured by Full Width at Half Maximum (FWHM).   

In case of a trichromatic system, three types of colour recording filters are often required. Primary 

colour filters whose peak transmittances are located in the blue, green and red region of the visible 

spectrum are commonplace in commercial colour cameras [1]. However, there exist colour cameras 

that possess complementary colour filters in contrast to the primary colour filters commonly utilised. 

Complementary colour filters intrinsically bear wider pass-band than their primary counterparts, and 

it is demonstrated that the former gives rise to better colour reproduction and signal-to-noise ratio in 

sufficient lighting conditions, whereas the latter offers higher sensitivity and resolution [2, 3]. 

Similarly, the choice of filters remains a question in multispectral capture. It is stated that 

narrowband filters should in theory outperform wideband ones with respect to the accuracy of 

spectral reconstruction [4, 5], whereas the wideband filters may produce superior results [4]. To the 

best of our knowledge, little research has been made so far to investigate the influence of various filter 

bandwidths on multispectral acquisition. 

In this context, our previous research on multispectral demosaicking [6, 7] posed the question of 

filter design in relation to the inter-band correlation, and consequently we presented some 

preliminary results [8]. In this paper, we focus on the impact of filter bandwidth on the accuracy of 

spectral reflectance estimation in the context of a multispectral image acquisition system, in a 

comprehensive and rigorous manner.  

The following parts of the article are organised as follows. It begins by a description of three linear 

reflectance reconstruction methods that are widely adopted and used. Next the procedures of and 

conditions in which the experiments were conducted are introduced prior to a presentation of the 

results. The last section draws some conclusions. 

Methods of spectral reflectance estimation from multispectral measurements  

Spectral reflectance estimation is an inverse problem aimed at an estimation of the spectra of 

higher dimensions from the corresponding multispectral measurements of lower dimensions. In 

concrete terms, a multispectral capture process can be described in a linear form as 

 

p	ൌ	SEr	      (1) 

 

where p refers to the multispectral responses represented by a m		k matrix, S corresponds to system 

responsivities represented by a  m		n matrix, E is the spectral power distribution of the illumination 

represented by a  n		n matrix, and r is the incoming spectra represented by a  n		k matrix, where m is 

the number of spectral bands captured by the system, n is number of spectral components of incident 

spectra, and k is the number of spectra. For multispectral image capture m	൐	3, whereas trichromatic 

acquisition can be considered as a special case where m	ൌ	3. 

Spectral reflectance estimation aims at an estimation of r from p. Equation 1 is solvable if SE is 

known and invertible, so that we have r	ൌ	Wp where W	ൌ	ሺSEሻ‐1. However it is not true in the case of 
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reflectance reconstruction. Nevertheless W	can be estimated by means of training where a collection of 

training spectra rt and corresponding responses pt	are utilised to derive an approximation of W. Three 

representative methods based on different principles were experimented with to this end. 

The method of linear least squares attempts to solve (1) by means of least-squares which leads to 

Equation 2: 

 

W	ൌ	rt	pt൅     (2) 

 

where pt൅ is a right pseudoinverse of  pt	:	pt൅	:	ptTሺpt	ptTሻ‐1. 

Imai and Berns [9] proposed to employ PCA (principal component analysis) to analyse the training 

spectra, which gives rise to Equation 3: 

 

W	ൌ	utpt൅     (3) 

 

where u is a n		 l matrix consisting of the l most significant eigenvectors of the training spectra by 

means of PCA. The parameter l	 is determined so that the RMSE (root mean square error) between rt 
and the estimated rt is minimised. 

Wiener estimation [10] is yet another method taking noise into consideration in the following 

manner, 

 

W	ൌ	rt	rtTሺSEሻTሺሺSEሻrt	rtTሻሺSEሻT	൅	Nሻ‐1  (4) 

 

where N is a term reflecting additive noise intrinsic to the system in form of 2I, 2 being the 

variance of estimated noise and I being an identity matrix. 2 is estimated using the method proposed 

by Hironaga and Shimano [10].  

Experimental setup 

The experiments were conducted on an experimental platform that simulates key elements of a 

CFA/MSFA based multispectral imaging system. To avoid unnecessary steps, off-the-shelf 

hyperspectral images are employed as the irradiance image formed by the optical system in the image 

plane after integrated by the sensor that bears as many pixels as the images themselves.  

In total 48 hyperspectral images were used in this study. 16 of them from Foster’s database [11] 

consist of a mixture of rural scenes, and another 32 from the CAVE project [12] include a wide variety 

of real-world materials and objects and artificial replicas. Spectral reflectance images were derived 

respectively and re-lit by the illuminant of CIE D65. A selection of pixel was selected from each image 

by means of horizontal and vertical down-sampling at the ratio of 1:5 without low-pass filtering, in 

order to reduce the computational intensity. 

For the ease of processing and comparison, all images were interpolated spectrally, and filters were 

designed accordingly, to cover the range between 400 nm and 700 nm with an interval of 1 nm.  

We chose six types of filter sets in three pairs. A 4-band filter set used in this research are depicted 

in Figure 1. We were interested in narrowband and wideband band-pass filters as well as 

corresponding inverted ones as band-stop filters. The FWHM of pass-band and stop-band was set to 

10/40/160 nm respectively. In practice, a pass-band of 10 nm simulates very narrow band-pass filters 

like LCTF (Liquid Crystal Tunable Filter), a stop-band of 10 nm mimics notch filters relying on 
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destructive interference. Similarly, a pass-band and a stop-band of 40/160 nm resemble the spectral 

transmittances of thin-film absorptive filters. The peak wavelengths were determined so that the 

intersection between both ends of the spectrum and the 40 nm band-pass filters correspond to the 3ߪ 

location, namely the filters cover the short end and long end of the spectrum with rather low 

transmittances. The number of filters studied ranged from 3 to 20. 

Figure 1: An example set of 4-band filters. The three graphs in the upper row show narrow, wide and ultra-

wide band-pass filters’ spectral transmittances with FWHM of 10, 40 and 160 nm respectively. The three 

drawings in the lower row present spectral transmittances of the corresponding band-reject filter sets. 

 

To make the results more robust and realistic, we also introduced a certain level of normally 

distributed noise to the simulated sensor responses. The mean level was determined so that the 

maximum signal-to-noise ratio (SNR) is 50 dB with the standard deviation at 10% of the noise level. 

To simplify the simulation, we also made an approximation that the sensor possesses constant 

quantum efficiency over the spectrum. 

The influence of the above filters in terms of the spectrum estimation accuracy was evaluated by 

means of Root Mean Square Error (RMSE) and Goodness of Fit Coefficient (GFC) [13] averaged 

among the 48 virtual scenes, as indicated underneath by Equations 5 and 6. 
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where R and R represent the original and estimated spectral reflectance at any pixel in an image. It 

is worth noting that lower RMSE scores mean higher performance and an RMSE of zero means a 

perfect estimation, whereas, GFC values range from 0 to 1 and an exact reconstruction would yield 1.    
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Figure 2:  Accuracy of spectrum estimation evaluated by Root Mean Square Error (RMSE). 
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Figure 3:  Accuracy of spectrum estimation evaluated by Goodness of Fit Coefficient (GFC). 
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Experimental results and discussion 

As depicted by Figures 2 and 3, in general, the wide band-pass filter set consistently outperforms 

others, followed by its band-reject version. On the other hand, the pair of ultra-wideband filter sets 

results in similar and comparatively lower accuracy of reflectance estimation. Clearly the narrowband 

filters are not simply the best on all occasions as opposed to what Imai et al. concluded [4]. 

Surprisingly, the performance of the narrow band-pass filter sets varies significantly and decreases 

dramatically from 13-band onward suggested by both of the two metrics. Otherwise results of other 

filter sets shift rather smoothly. 

Results obtained with the first and second methods illustrate very similar tendencies, whereas the 

Wiener estimation yields somewhat different results potentially due to the involvement of noise in the 

computation. As the number of bands increases, Wiener estimation tends to provide more stable 

results, whereas the performance of the other two methods reduces gradually, except of the narrow 

band-pass set. 

The optimal number of filters largely depends on the methods used, and the two metrics do not 

seem to make a difference, however the metrics do change the order of performance. For instance, the 

narrow band-reject filter set is the worst method in terms of GFC, while it is not the case in terms of 

RMSE. 

In our previous work [8] Mean Square Error was employed as the metric, which makes the results 

visually different from the ones presented here. 

Conclusions 

We evaluated the performance of 6 types of filters of varying bandwidths in terms of the accuracy of 

spectral reflectance estimation with three linear estimation methods in the context of multispectral 

image acquisition, with the help of a simulated imaging framework. 

The results are not fully consistent with the conclusions drawn by previous work that narrow band-

pass filters always yield higher spectral reproduction accuracy. Nevertheless, we found that band-pass 

and band-reject filters of reasonably wide band commonly seen in practice benefit multispectral 

acquisition. Further, band-pass or band-reject filters of extremely narrow or broad bandwidths 

perform unsatisfactorily or unsteadily. 

The experiments were conducted in simulated lighting condition that is sufficient in terms of 

intensity. In insufficient lighting conditions, we assume that the advantages of wider bandwidths 

would be more visible in the system sensitivity as well as the signal-to-noise ratio. 
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