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The pupillary light reflex has been known to be useful in medical and clinical applications and the 

understanding its mechanisms is of great importance. Previous studies have shown that factors such 

as the luminance and colours of light stimuli are related to the pupillary light reflex. Light information 

entering the retina is first encoded by retinal photoreceptors and signals from each photoreceptor are 

input to the pupil control mechanism via post-receptoral processes and complex neural circuits in higher 

brain functions. Test stimuli of varying colour and luminance seem to be insufficient to investigate the 

pupil control mechanism. This is because multiple photoreceptors respond to colour and/or luminance 

stimuli, and the outputs of multiple photoreceptors are delivered to the pupil control mechanism or other 

higher brain functions. To understand the pupil control mechanism, it seems important to consider the 

physiological processes such as photoreceptors and post-receptoral mechanisms and possibly higher 

brain functions that contribute to the pupil control mechanism. The aim of this study was to investigate 

how each retinal photoreceptor affects the pupillary light reflex, rather than changing the colour or 

luminance of the test stimulus. To this end, a four-primary light stimulator was used to independently 

stimulate three types of cones and melanopsin photoreceptors. We measured steady pupillary 

responses to the test stimuli which stimulated each retinal photoreceptor independently. The test stimuli 

increased or decreased the stimulation to four types of photoreceptors, melanopsin, L cone, M cone 

and S cone. It was found how the retinal photoreceptors, melanopsin, L cone, M cone and Scone, 

contribute to the pupillary light reflex. The use of test stimuli defined in photoreceptor stimulation is 

expected to advance future pupil research.  
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Introduction 

In general, the pupil constricts in bright light and dilates in dark light. This pupil response is called 

the pupillary light reflex and is known to be useful for both basic research such as the study of brain 

functions, and medical/clinical applications such as disease detection and preventive medicine. It is 

therefore considered very important to investigate the mechanisms that drive the pupil. Previous 

studies have shown that the pupil light reflex varies with stimulus luminance, colour, spatial frequency 

and motion [1-9].  
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 In the literature although there are variety of pupil studies for many years the mechanism that drives 

the pupil is still poorly understood. The human retina contains cone and rod photoreceptors, as well as 

the recently discovered melanopsin photoreceptors [10]. Melanopsin photoreceptors are capable of 

photoreception themselves. They are also well known to transmit signals of light information to the 

pupil control mechanism. Light information entering the retina is first encoded by retinal 

photoreceptors and signals from each photoreceptor are input to the pupil control mechanism via post-

receptoral processes and complex neural circuits in higher brain functions (Figure 1).  

Figure 1: Schematic diagram of the pupil control mechanism. 

 

Test stimuli of varying colour and luminance seem to be insufficient to investigate the pupil control 

mechanism associated with the pupillary light reflex. This is because multiple photoreceptors respond 

to colour and/or luminance stimuli, and the outputs of multiple photoreceptors are delivered to the 

pupil control mechanism or other higher brain functions. To understand the pupil control mechanism, 

it seems important to consider the physiological processes such as photoreceptors and post-receptoral 

mechanisms and possibly higher brain functions that contribute to the pupil control mechanism.  

The aim of this study was to investigate how each retinal photoreceptor affects the pupillary light 

reflex, rather than changing the colour or luminance of the test stimulus. To this end, a four-primary 

light stimulator was used to independently stimulate three types of cones and melanopsin 

photoreceptors. Using this device, it is possible to stimulate only the target photoreceptors and not 

change the amount of stimulation to the other photoreceptors. Such a technique has long been used as 

the silent-substitution technique in physiology and psychophysics [11-12]. By using this technique, it is 

possible, for example, to distinguish pupillary light reflex to a metameric pair of stimuli with equal 

stimulation of L, M and S cones; the photometric luminance and chromaticity are the same whereas the 

melanopsin stimulation is different. This study clarified how light flux affects the pupillary light reflex 

in relation to the amount of photoreceptor stimulation. The use of test stimuli defined in photoreceptor 

stimulation is expected to advance future pupil research.  

Methods 

Apparatus 

We used a multi-primary stimulation system for our experiments [13]. This stimulation system can 

independently stimulate each photoreceptor using silent-substitution technique, based on the amount 

of stimulation to each photoreceptor. 
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Figure 2: A multi-primary stimulation system. 

 

Figure 2 shows the multi-primary stimulation system. The stimulation system consisted of a stimulus 

control unit, LED control units, LED drivers, interreference filters, etc. The stimulus control unit 

calculated the luminance of LEDs which stimulate to each photoreceptor. The output of stimulus control 

unit was sent to the LED control unit via USB with JSON (JavaScript Object Notation). In the LED 

control unit, the microcomputer (STM32F407G, STMicroelectronics, USA) calculated a Pulse Width 

Modulation (PWM) for each LED. The outputs of the LED light sources were controlled by PWM. The 

LED drivers send a power to the four LED light sources. The lights from the LED light sources reaches 

the semi-integrating sphere through lenses, interference filters and optical fibres.  

The stimulation system had four primary colours: red, yellow, green and blue, with peak wavelengths 

of 633 nm, 569 nm, 532 nm and 463 nm, respectively. Figure 3 shows these spectral radiances. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Primary of each LED. 

 

We chose these four primary colours to maximise the contrast of melanopsin modulation on a white 

control stimulus and to minimise individual differences. The four-primary stimulation system enables 

us to independently control L-, M-, S-cones and melanopsin stimulations. To minimise the effect of 

rods, we used the control stimulus with high luminance level to prevent rod contamination. In order to 

independently control the five photoreceptors it is straightforward to use five primaries for the 

independent control of the stimulation. However, bandwidths of the primaries in five-primary 

stimulation system are usually narrower than those of a four-primary stimulation system that might 

cause a large individual difference. When the bandwidths of the primary are narrow there is a large 

individual difference in the colour matching functions [14]. This is because the photoreceptor 

stimulation is based on the inner product of the spectral radiance of the test stimulus and the spectral 
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sensitivity of each photoreceptor, so-called the principle of univariance [15]. To ensure accuracy, it is 

important to consider these individual differences. The Full Width Half Maximum (FWHM) of the four 

primaries were 65 nm for red, 27 nm for green, 25 nm for yellow, and 10 nm for blue, respectively. 

Calibration 

The light stimulus consists of the four primaries. The relationship between luminance from each 

primary and PWM ratio is slightly away from the linearity due to physical characteristics of LED in the 

real environment. Although PWM is an efficient technique that provides high LED output linearity, 

small deviations from linearity in luminance were observed, which were probably caused by thermal 

effects of the LEDs [16]. We used a fourth-order polynomial fit to consider deviations in each LED.  

Test stimuli 

We used nine test stimuli that can stimulate each photoreceptor independently. The silent-

substitution paradigm was used for the independent stimulations [17-19]. The test stimuli’ s amounts 

of stimulation to each photoreceptor were modulated from the control stimulus.  

Figure 4: Relative spectral sensitivities of cone and melanopsin photoreceptors. 

 

The amount of stimulation to each photoreceptor was calculated from the spectral radiance of the 

test stimuli and the spectral sensitivity of each photoreceptor. Figure 4 shows the spectral sensitivities 

of L, M, S cones and melanopsin. The amount of cone stimulation was calculated based on cone 

fundamentals at the peripheral visual field in human (L, M and S) [20-21], and that of melanopsin 

stimulation was calculated based on the sensitivity curve of melanopsin (Mel) [22-24] that has a peak 

sensitivity at 493 nm for young adult. The amount of stimulation to each photoreceptor L, M, S and Mel 

are calculated by the following Equations (1-4); I(λ) represents the spectral radiance of the test stimulus. 

L(λ), M(λ), S(λ) and Mel(λ) represent the spectral sensitivity of each photoreceptor; L cone, M cone, S 

cone and melanopsin. 

 

𝑀𝑒𝑙 = 𝐾𝑚𝑒𝑙 ∫𝑀𝑒𝑙(𝜆) 𝐼(𝜆)𝑑𝜆 (1) 

𝐿 = 𝐾𝑚∫𝐿(𝜆) 𝐼(𝜆)𝑑𝜆 (2) 

𝑀 = 𝐾𝑚∫𝑀(𝜆) 𝐼(𝜆)𝑑𝜆 (3) 

𝑆 = 𝐾𝑠∫𝑆(𝜆) 𝐼(𝜆)𝑑𝜆 (4) 
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Km represents the conversion factor from the radiant power (watt) to the luminous power (lumen); 

The conversion factor K for the L- and M-cone stimulations was 683 lmW-1. Since we assume that S-

cone and melanopsin do not contribute to the photopic luminance, we used the conversion factor for S 

cone [25]; the stimulation to S cone 1 cdm-2 was defined as the amount of stimulation to S cone produced 

by equal energy white with luminance of 1 cdm-2. Similarly, we defined the conversion factor for 

melanopsin. The conversion factor, Ks for S cones is 1466 lmW-1 and the conversion factor for 

melanopsin, Kmel, was 872 lmW-1, respectively.  

The nine test stimuli were used for the experiment. These test stimuli were increased or decreased 

the amount for each photoreceptor by 20 %, compared to the control stimulus (Figure 5). Summaries 

of cone, and melanopsin stimulations for the stimuli and their spectra for all conditions in the present 

study are in Figure 6 and Table 1. 

Figure 5: Relative modulation of photoreceptor stimulation from the control stimulus. 
 

Figure 6: Spectra of each test stimulus. 

 

A white control stimulus was used with photoreceptor stimulations of 206 cdm-2 for L cone,  

76 cdm-2 for M cone, 132 cdm-2 for S cone, and 174 cdm-2 for melanopsin. We used the melanopsin high 

stimulus, MelH, and melanopsin low stimulus, MelL, which only modulated the amount of melanopsin 

stimulation by ±20% from the control stimulus. Similarly, we modulated the amount of stimulation to 

L, M and S cone by ±20%. Those stimuli were LH, LL, MH, ML, SH and SL. The five test stimuli, Control, 
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MelH, MelL, SH, and SL stimuli, have the same luminance of 282 cdm-2. In particular, Control, MelH, 

and MelL stimulus were metamers with the same tristimulus values. 

 

Stimulus 
Photoreceptor stimulation 

(cdm-2) 
Luminance Contrast x y 

 Mel L M S (cdm-2)  CIE2006 

Control 174 206 76 132 282 0 0.43 0.39 

Melanopsin High 209 206 76 132 282 +20% 0.43 0.39 

Melanopsin Low 140 206 76 132 282 -20% 0.43 0.39 

L cone High 174 248 76 132 324 +20% 0.48 0.37 

L cone Low 174 165 76 132 241 -20% 0.34 0.42 

M cone High 174 206 91 132 297 +20% 0.37 0.44 

M cone Low 174 206 61 132 267 -20% 0.48 0.35 

S cone High 174 206 76 159 282 +20% 0.42 0.37 

S cone Low 174 206 76 106 282 -20% 0.44 0.41 

Table 1: Photoreceptor stimulation for each test stimulus. 

 

We calculated the photoreceptor stimulation from the measured spectra of the test stimuli and the 

spectral sensitivity of each photoreceptor. The contrast of photoreceptor stimulation, calculated from 

the spectra to the control stimulus, was approximately ±20% (Table 2). These results indicate that the 

exposed test stimuli met our conditions for stimulus presentation.  

 

Stimulus 
Contrast of each measured photoreceptor stimulation 

L M S Mel 

Melanopsin High 0.2% 0.3% 0.2% 20.5% 

Melanopsin Low -0.2% -0.3% -0.1% -20.4% 

L cone High 20.3% 0.3% 0.4% 0.4% 

L cone Low -20.2% -0.2% -0.2% -0.1% 

M cone High -0.6% 19.6% 0.0% 0.1% 

M cone Low 0.2% -19.7% 0.6% 0.4% 

S cone High 0.0% -0.1% 19.7% -0.3% 

S cone Low 0.3% 0.3% -19.4% 0.6% 

Table 2: Contrast of each measured photoreceptor stimulation to the control stimulus. 

Procedure 

The right eye was exposed to full-field stimuli and the pupillary response of the left eye was measured 

with an infrared camera. The observers were exposed to the test stimulus for approximately 5 minutes 

(Figure 7). The steady pupil diameter to the test stimuli was recorded for the last 100 seconds. The order 

of a pair of the test stimuli were counterbalanced. The eight observers participated in the experiment. 

They were 3 males and 5 females aged between 21 and 25 years old, with a mean age of 22.1.  
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Figure 7: Experimental environment and presentation of the test stimuli. 

Analysis 

A time series of pupil data for the last 100 seconds during which the observer was exposed to the test 

stimulus was used for analysis. The video was captured at 30 frames per second, resulting in 3000 

frames of pupil images for each test stimulus. The pupil diameters during the 100 seconds were 

averaged. The observers took at least four measurements for each test stimulus.  

Results and discussion 

The averaged pupil diameters from 8 observers were shown in Figure 8. Error bars represent 

standard deviations. The significant differences in the results of melanopsin and S cone were found. 

The steady-state pupil diameter to the MelH stimulus was significantly smaller than that to the MelL 

stimulus (t (7) = 2.36, p = .004). The pupil diameter to the LH stimulus was smaller than that to the LL 

stimulus (t (7) = 2.36, p = .210). The pupil diameter to the ML stimulus was smaller than that to the 

MH stimulus (t (7) = 2.36, p = .144). The pupil diameter to the SH stimulus was significantly smaller 

than that to the SL stimulus (t (7) = 2.36, p = .014).  

Figure 8: Averaged pupil diameters to the test stimuli. 

 

It was found that the stimulation to melanopsin photoreceptors affects the steady-state pupil 

diameter which is consistent with the previous studies [19,26-29]. In addition, L-cone stimulation 

decreases a pupil diameter whereas M-cone stimulation increases it, suggesting that there is a 

contribution of L-M cone-opponent mechanism to the pupil control mechanism that is also consistent 

with previous studies [9,29-30]; the L-M cone opponent mechanism contributes to the pupil responses.  
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Conclusions 

In this study, we measured steady pupillary responses to the test stimuli modulating the amount of 

stimulation to each photoreceptor independently, rather than changing the colour or luminance of the 

test stimulus. This is because multiple photoreceptors respond to colour and/or luminance stimuli. To 

understand the pupil control mechanism, it seems important to consider the physiological processes 

such as photoreceptors, post-receptoral mechanisms and possibly higher brain functions that 

contribute to the pupil control mechanism. It was found how the retinal photoreceptors, melanopsin, L 

cone, M cone and Scone, contribute to the pupillary light reflex. The use of test stimuli defined in 

photoreceptor stimulation is expected to advance future pupil research. 
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